Changes in motoneuron afterhyperpolarization duration in stroke survivors.

J Neurophysiol

Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois; Department of Biomedical Engineering, Northwestern University, Chicago, Illinois.

Published: September 2014

Hemispheric brain injury resulting from a stroke is often accompanied by muscle weakness in limbs contralateral to the lesion. In the present study, we investigated whether weakness in contralesional hand muscle in stroke survivors is partially attributable to alterations in motor unit activation, including alterations in firing rate modulation range. The afterhyperpolarization (AHP) potential of a motoneuron is a primary determinant of motoneuron firing rate. We examined differences in AHP duration in motoneurons innervating paretic and less impaired (contralateral) limb muscles of hemiparetic stroke survivors as well as in control subjects. A novel surface EMG (sEMG) electrode was used to record motor units from the first dorsal interosseous muscle. The sEMG data were subsequently decomposed to derive single-motor unit events, which were then utilized to produce interval (ISI) histograms of the motoneuron discharges. A modified version of interval death rate (IDR) analysis was used to estimate AHP duration. Results from data analyses performed on both arms of 11 stroke subjects and in 7 age-matched control subjects suggest that AHP duration is significantly longer for motor units innervating paretic muscle compared with units in contralateral muscles and in units of intact subjects. These results were supported by a coefficient of variation (CV) analysis showing that paretic motor unit discharges have a lower CV than either contralateral or control units. This study suggests that after stroke biophysical changes occur at the motoneuron level, potentially contributing to lower firing rates and potentially leading to less efficient force production in paretic muscles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137251PMC
http://dx.doi.org/10.1152/jn.01091.2012DOI Listing

Publication Analysis

Top Keywords

stroke survivors
12
ahp duration
12
motor unit
8
firing rate
8
innervating paretic
8
control subjects
8
motor units
8
stroke
6
units
5
changes motoneuron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!