Although diamond is the hardest material for cutting tools, poor thermal stability has limited its applications, especially at high temperatures. Simultaneous improvement of the hardness and thermal stability of diamond has long been desirable. According to the Hall-Petch effect, the hardness of diamond can be enhanced by nanostructuring (by means of nanograined and nanotwinned microstructures), as shown in previous studies. However, for well-sintered nanograined diamonds, the grain sizes are technically limited to 10-30 nm (ref. 3), with degraded thermal stability compared with that of natural diamond. Recent success in synthesizing nanotwinned cubic boron nitride (nt-cBN) with a twin thickness down to ∼3.8 nm makes it feasible to simultaneously achieve smaller nanosize, ultrahardness and superior thermal stability. At present, nanotwinned diamond (nt-diamond) has not been fabricated successfully through direct conversions of various carbon precursors (such as graphite, amorphous carbon, glassy carbon and C60). Here we report the direct synthesis of nt-diamond with an average twin thickness of ∼5 nm, using a precursor of onion carbon nanoparticles at high pressure and high temperature, and the observation of a new monoclinic crystalline form of diamond coexisting with nt-diamond. The pure synthetic bulk nt-diamond material shows unprecedented hardness and thermal stability, with Vickers hardness up to ∼200 GPa and an in-air oxidization temperature more than 200 °C higher than that of natural diamond. The creation of nanotwinned microstructures offers a general pathway for manufacturing new advanced carbon-based materials with exceptional thermal stability and mechanical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature13381 | DOI Listing |
Pharmaceutics
January 2025
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
This study investigates the preparation of coamorphous systems composed entirely of active pharmaceutical ingredients (APIs), namely praziquantel, niclosamide, and mebendazole. The objective was to formulate and characterize binary and ternary coamorphous systems to evaluate their structural, thermal, and stability properties. Ten different mixtures (binary and ternary) were designed through a mixture design approach and prepared using a sustainable, one-step neat grinding process in a lab-scale vibrational mill.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni Suef 62764, Egypt.
Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 2-factorial design, eight formulations were produced using the solvent evaporation process.
View Article and Find Full Text PDFPharmaceutics
December 2024
Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
Curcumin appears to be well tolerated and effective for managing chronic inflammatory pain, but its poor oral bioavailability has been a hurdle in its use as a therapeutic agent. The current study was performed to characterize a novel co-amorphous compound based on curcumin/L-arginine 1:2 (CAC12). : Stability, solubility and structural characterization of the CAC12 were carried out by spectrometry techniques and in vitro assays, whereas the antinociceptive and anti-inflammatory effects were evaluated by CFA or carrageenan models.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 5000, Argentina.
Numerous studies have shown the potential effect of bioactive agents against weeds. In this study, we developed two binary formulations with nonanoic acid, citral, or thymoquinone as herbicides and evaluated their physicochemical properties. The presence of the bioactive compounds in the formulations was confirmed through FTIR spectroscopy.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Laboratory of Physical Chemistry of Materials (LCPM), Campus Fanar, Faculty of Sciences II, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon.
Increasing the flame retardancy of lignocellulosic materials such as × can effectively enable their wide use. This study examines the fireproofing process of Miscanthus particles using an eco-friendly process by grafting phytic acid and urea in aqueous solution. Miscanthus particles underwent a steam explosion step before being grafted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!