Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263694PMC
http://dx.doi.org/10.1177/0962280214537390DOI Listing

Publication Analysis

Top Keywords

reference standard
12
quantitative imaging
8
statistical methods
8
algorithm comparisons
8
qib algorithm
8
designs reference
8
qib
5
imaging biomarkers
4
biomarkers review
4
review statistical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!