AI Article Synopsis

Article Abstract

Background: The nonexpressor of pathogenesis-related genes 1, NPR1 (also known as NIM1 and SAI1), is a key regulator of SA-mediated systemic acquired resistance (SAR) in Arabidopsis. In rice, the NPR1 homolog 1 (NH1) interacts with TGA transcriptional regulators and the Negative Regulator of Resistance (NRR) protein to modulate the SAR response. Though five NPR1 homologs (NHs) have been identified in rice, only NH1 and NH3 enhance immunity when overexpressed. To understand why NH1 and NH3, but not NH2, NH4, or NH5, contribute to the rice immune response, we screened TGA transcription factors and NRR-like proteins for interactions specific to NH1 and NH3. We also examined their co-expression patterns using publicly available microarray data.

Results: We tested five NHs, four NRR homologs (RHs), and 13 rice TGA proteins for pair-wise protein interactions using yeast two-hybrid (Y2H) and split YFP assays. A survey of 331 inter-family interactions revealed a broad, complex protein interaction network. To investigate preferred interaction partners when all three families of proteins were present, we performed a bridged split YFP assay employing YFPN-fused TGA, YFPC-fused RH, and NH proteins without YFP fusions. We found 64 tertiary interactions mediated by NH family members among the 120 sets we examined. In the yeast two-hybrid assay, each NH protein was capable of interacting with most TGA and RH proteins. In the split YFP assay, NH1 was the most prevalent interactor of TGA and RH proteins, NH3 ranked the second, and NH4 ranked the third. Based on their interaction with TGA proteins, NH proteins can be divided into two subfamilies: NH1, NH2, and NH3 in one family and NH4 and NH5 in the other.In addition to evidence of overlap in interaction partners, co-expression analyses of microarray data suggest a correlation between NH1 and NH3 expression patterns, supporting their common role in rice immunity. However, NH3 is very tightly co-expressed with RH1 and RH2, while NH1 is strongly, inversely co-expressed with RH proteins, representing a difference between NH1 and NH3 expression patterns.

Conclusions: Our genome-wide surveys reveal that each rice NH protein can partner with many rice TGA and RH proteins and that each NH protein prefers specific interaction partners. NH1 and NH3 are capable of interacting strongly with most rice TGA and RH proteins, whereas NH2, NH4, and NH5 have weaker, limited interaction with TGA and RH proteins in rice cells. We have identified rTGA2.1, rTGA2.2, rTGA2.3, rLG2, TGAL2 and TGAL4 proteins as the preferred partners of NH1 and NH3, but not NH2, NH4, or NH5. These TGA proteins may play an important role in NH1- and NH3-mediated immune responses. In contrast, NH4 and NH5 preferentially interact with TGAL5, TGAL7, TGAL8 and TGAL9, which are predicted to be involved in plant development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094623PMC
http://dx.doi.org/10.1186/1471-2164-15-461DOI Listing

Publication Analysis

Top Keywords

nh1 nh3
32
tga proteins
32
nh4 nh5
20
proteins
15
nh1
12
tga
12
nh2 nh4
12
rice tga
12
split yfp
12
interaction partners
12

Similar Publications

Plants are widely existing in the environments and have been considered as potential sentinel species of toxic chemicals' exposure. In this study, the deadly toxic chemicals of three nitrogen mustards (NMs, including NH1, NH2 and NH3) were selected as the investigated targets. First, the reactivities of common endogenous plant components with NMs were examined in vitro.

View Article and Find Full Text PDF

Increasing pressures on land resources requires increased land use efficiency. Over 900 million ha of sandy soils throughout the world are extensively used for agricultural crop production, most requiring nutrient inputs. Although use of humic substances together with inorganic fertilizer as soil amendments has been introduced, their synergistic effects on plant growth in sandy soils are not well addressed.

View Article and Find Full Text PDF

Electrocatalytic reduction of nitrate to NH (NO3RR) on Cu offers sustainable NH production and nitrogen recycling from nitrate-contaminated water. However, Cu affords limited NO3RR activity owing to its unfavorable electronic state and the slow proton transfer on its surface, especially in neutral/alkaline media. Furthermore, although a synchronous "NO3RR and NH collection" system has been developed for nitrogen recycling from nitrate-laden water, no system is designed for natural water that generally contains low-concentration nitrate.

View Article and Find Full Text PDF

Single-Cell Analysis Reveals the Range of Transcriptional States of Circulating Human Neutrophils.

J Immunol

August 2022

Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD.

Article Synopsis
  • * Our modified data analysis pipeline greatly improves the detection and characterization of neutrophils in scRNA-seq studies, revealing that they can be grouped into four distinct transcriptional clusters.
  • * The study indicates that neutrophils transition between states characterized by immature and transitional phenotypes, with implications for understanding their roles in health and disease.
View Article and Find Full Text PDF

Comparative Study of the Petal Structure and Fragrance Components of the , a Precious Water Lily.

Molecules

January 2022

Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.

, a precious water lily, is a widely-cultivated aquatic flower with high ornamental, economic, medicinal, and ecological value; it blooms recurrently and emits a strong fragrance. In the present study, in order to understand the volatile components of and its relationship with petals structure characteristics, the morphologies and anatomical structures of the flower petals of were investigated, and volatile compounds emitted from the petals were identified. Scanning and transmission electron microscopy were used to describe petal structures, and the volatile constituents were collected using headspace solid-phase microextraction (HS-SPME) fibers and analyzed using gas chromatography coupled with mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!