An inclusion complex consisting of a boronic acid fluorophore (C1-APB) and β-cyclodextrin (β-CyD) acts as a supramolecular sugar sensor whose response mechanism is based on photoinduced electron transfer (PET) from the excited pyrene to the boronic acid. We have investigated the PET process in C1-APB/CyD complexes by using time-resolved photoluminescence (TRPL) measurements at room temperature, and have succeeded in estimating the electron-transfer time to be about 1 ns. We have also studied the effects of CyDs on the PET process by comparing two kinds of CyDs (α-CyD, β-CyD) under different water-dimethyisulfoxide (DMSO) concentration conditions. We found that the CyDs interacting with the boronic acid moiety completely inhibits PET quenching and increases the monomer fluorescence intensity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.30.643 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!