Background: We assessed the sensitivity to adjuvant chemotherapy in cell cycle checkpoint kinase 2 (CHEK2) vs non-CHEK2 breast cancer patients by comparing the contralateral breast cancer incidence and distant disease-free and breast cancer-specific survival between both groups, stratified for adjuvant chemotherapy.

Methods: One Dutch hereditary non-BRCA1/2 breast cancer patient cohort (n=1220) and two Dutch cohorts unselected for family history (n=1014 and n=2488, respectively) were genotyped for CHEK2 1100delC. Hazard ratios for contralateral breast cancer, distant disease-free and breast cancer-specific death for mutation carriers vs noncarriers were calculated using the Cox proportional hazard method, stratified for adjuvant chemotherapy.

Results: The CHEK2 mutation carriers (n=193) had an increased incidence of contralateral breast cancer (multivariate hazard ratio 3.97, 95% confidence interval 2.59-6.07). Distant disease-free and breast cancer-specific survival were similar in the first 6 years in mutation carriers compared with noncarriers, but diverted as of 6 years after breast cancer diagnosis (multivariate hazard ratios and 95% confidence intervals 2.65 (1.79-3.93) and 2.05 (1.41-2.99), respectively). No significant interaction between CHEK2 and adjuvant chemotherapy was observed.

Conclusions: The CHEK2 1100delC-associated breast cancer is associated with a higher contralateral breast cancer rate as well as worse survival measures beyond 6 years after diagnosis. No differential sensitivity to adjuvant chemotherapy was observed in CHEK2 patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150261PMC
http://dx.doi.org/10.1038/bjc.2014.306DOI Listing

Publication Analysis

Top Keywords

breast cancer
40
contralateral breast
20
adjuvant chemotherapy
16
breast
13
distant disease-free
12
disease-free breast
12
breast cancer-specific
12
mutation carriers
12
cancer
10
chek2 1100delc
8

Similar Publications

Effects of photobiomodulation in mitochondrial quantity, biogenesis and mitophagy-associated genes in breast cancer cells.

Lasers Med Sci

January 2025

Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.

In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA).

View Article and Find Full Text PDF

Purpose Of Review: The present review describes the available literature on the physiologic mechanisms that modulate hunger, appetite, satiation, and satiety with a particular focus on well-established and emerging factors involved in the classic satiety cascade model.

Recent Finding: Obesity is a significant risk factor for numerous chronic conditions like cancer, cardiovascular diseases, and diabetes. As excess energy intake is considered by some to be the primary driver of weight gain, tremendous collective effort should be directed toward reducing excessive feeding at the individual and population levels.

View Article and Find Full Text PDF

Liquid biopsy technologies: innovations and future directions in breast cancer biomarker detection.

Biomed Microdevices

January 2025

Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.

Globally, breast cancer is the most frequent type of cancer, and its early diagnosis and screening can significantly improve the probability of survival and quality of life of those affected. Liquid biopsy-based targets such as circulating tumor cells, circulating tumor DNA, and exosomes have been instrumental in the early discovery of cancer, and have been found to be effective in stage therapy, recurrence monitoring, and drug selection. Biosensors based on these target related biomarkers convert the tested substances into quantifiable signals such as electrical and optical signals through signal transduction, which has the advantages of high sensitivity, simple operation, and low invasiveness.

View Article and Find Full Text PDF

Purpose: To evaluate the effects of four-dimensional noise reduction filtering using a similarity algorithm (4D-SF) on the image quality and tumor visibility of low-dose dynamic computed tomography (CT) in evaluating breast cancer.

Materials And Methods: Thirty-four patients with 38 lesions who underwent low-dose dynamic breast CT and were pathologically diagnosed with breast cancer were enrolled. Dynamic CT images were reconstructed using iterative reconstruction alone or in combination with 4D-SF.

View Article and Find Full Text PDF

Plant cross-fertilization for production of dual-specific antibodies targeting both Ebola virus-like particles and HER2 protein in F plants.

Genes Genomics

January 2025

Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea.

Background: This study explores the cross-fertilization of transgenic tobacco plants to produce dual-specific monoclonal antibodies (mAbs) targeting Ebola virus-like particles and HER2 proteins. We generated F plants by hybridizing individual transgenic lines expressing the anti-HER2 breast cancer VHH mAb (HV) and the H-13F6 human anti-Ebola large single chain mAb (EL).

Objective: Hybridizing transgenic plants to express dual-antibodies between different structures VHH and LSCK indicate the potential of transgenic plants as a cost-effective and scalable production system for dual targeting mAbs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!