Hydrogen and oxygen surface-terminated nanocrystalline diamond (NCD) films are studied by the contactless time-resolved microwave conductivity (TRMC) technique and X-ray photoelectron spectroscopy (XPS). The optoelectronic properties of undoped NCD films are strongly affected by the type of surface termination. Upon changing the surface termination from oxygen to hydrogen, the TRMC signal rises dramatically. For an estimated quantum yield of 1 for sub-bandgap optical excitation the hole mobility of the hydrogen-terminated undoped NCD was found to be ∼0.27 cm(2)/(V s) with a lifetime exceeding 1 μs. Assuming a similar mobility for the oxygen-terminated undoped NCD a lifetime of ∼100 ps was derived. Analysis of the valence band spectra obtained by XPS suggests that upon oxidation of undoped NCD the surface Fermi level shifts (toward an increased work function). This shift originates from the size and direction of the electronic dipole moment of the surface atoms, and leads to different types of band bending at the diamond/air interface in the presence of a water film. In the case of boron-doped NCD no shift of the work function is observed, which can be rationalized by pinning of the Fermi level. This is confirmed by TRMC results of boron-doped NCD, which show no dependency on the surface termination. We suggest that photoexcited electrons in boron-doped NCD occupy nonionized boron dopants, leaving relatively long-lived mobile holes in the valence band.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am501907q | DOI Listing |
ACS Omega
August 2018
Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.
The impact of lithium-ion implantation and postannealing processes on improving the electrical conductivity and field electron emission (FEE) characteristics of nitrogen-doped nanocrystalline diamond (nNCD) films was observed to be distinctly different from those of undoped NCD (uNCD) films. A high-dose Li-ion implantation induced the formation of electron trap centers inside the diamond grains and amorphous carbon (a-C) phases in grain boundaries for both types of NCD films. Postannealing at 1000 °C healed the defects, eliminated the electron trap centers, and converted the a-C into nanographitic phases.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2016
Imec , Kapeldreef 75, B-3001 Leuven, Belgium.
B-doped diamond has become the ultimate material for applications in the field of microelectromechanical systems (MEMS), which require both highly wear resistant and electrically conductive diamond films and microstructures. Despite the extensive research of the tribological properties of undoped diamond, to date there is very limited knowledge of the wear properties of highly B-doped diamond. Therefore, in this work a comprehensive investigation of the wear behavior of highly B-doped diamond is presented.
View Article and Find Full Text PDFJ Mater Sci Mater Med
May 2016
Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films.
View Article and Find Full Text PDFJ Neural Eng
December 2015
London Centre for Nanotechnology and Department of Electronic and Electrical and Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK.
Objective: We quantitatively investigate the biocompatibility of chemical vapour deposited (CVD) nanocrystalline diamond (NCD) after the inclusion of boron, with and without nanostructuring. The nanostructuring method involves a novel approach of growing NCD over carbon nanotubes (CNTs) that act as a 3D scaffold. This nanostructuring of BNCD leads to a material with increased capacitance, and this along with wide electrochemical window makes BNCD an ideal material for neural interface applications, and thus it is essential that their biocompatibility is investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2014
Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands.
Hydrogen and oxygen surface-terminated nanocrystalline diamond (NCD) films are studied by the contactless time-resolved microwave conductivity (TRMC) technique and X-ray photoelectron spectroscopy (XPS). The optoelectronic properties of undoped NCD films are strongly affected by the type of surface termination. Upon changing the surface termination from oxygen to hydrogen, the TRMC signal rises dramatically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!