Cloning of complementary DNAs that encode either of two forms of the alpha subunit of the guanine nucleotide-binding regulatory protein (Gs) that stimulates adenylyl cyclase into appropriate plasmid vectors has allowed these proteins to be synthesized in Escherichia coli (Graziano, M.P., Casey, P.J., and Gilman, A.G. (1987) J. Biol. Chem. 262, 11375-11381). A rapid procedure for purification of milligram quantities of these proteins is described. As expressed in E. coli, both forms of Gs alpha (apparent molecular weights of 45,000 and 52,000) bind guanosine 5'-(3-O-thio)triphosphate stoichiometrically. The proteins also hydrolyze GTP, although at different rates (i.e. 0.13.min-1 and 0.34.min-1 at 20 degrees C for the 45- and the 52-kDa forms, respectively). These rates reflect differences in the rate of dissociation of GDP from the two proteins. Both forms of recombinant Gs alpha have essentially the same kcat for GTP hydrolysis, approximately 4.min-1. Recombinant Gs alpha interacts functionally with G protein beta gamma subunits and with beta-adrenergic receptors. The proteins can also be ADP-ribosylated stoichiometrically by cholera toxin. This reaction requires the addition of beta gamma subunits. Both forms of recombinant Gs alpha can reconstitute GTP-, isoproterenol + GTP-, guanosine 5'-(3-O-thio)triphosphate-, and fluoride-stimulated adenylyl cyclase activity in S49 cyc- membranes to maximal levels, although their specific activities for this reaction are lower than that observed for Gs purified from rabbit liver. Experiments with purified bovine brain adenylyl cyclase indicate that the affinity of recombinant Gs alpha for adenylyl cyclase is 5-10 times lower than that of liver Gs under these assay conditions; however, the intrinsic capacity of the recombinant protein to activate adenylyl cyclase is normal. These findings suggest that Gs alpha, when synthesized in E. coli, may fail to undergo a posttranslational modification that is crucial for high affinity interaction of the G protein with adenylyl cyclase.

Download full-text PDF

Source

Publication Analysis

Top Keywords

adenylyl cyclase
24
recombinant alpha
16
escherichia coli
8
forms alpha
8
forms recombinant
8
beta gamma
8
gamma subunits
8
alpha
7
forms
6
adenylyl
6

Similar Publications

D1 Receptor Functional Asymmetry at Striatonigral Neurons: A Neurochemical and Behavioral Study in Male Wistar Rats.

J Neurosci Res

January 2025

Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.

Lateralization of motor behavior, a common phenomenon in humans and several species, is modulated by the basal ganglia, a site pointed out for the interhemispheric differences related to lateralization. Our study aims to shed light on the potential role of the striatonigral D1 receptor in functional asymmetry in normal conditions through neurochemical and behavioral means. We found that D1 receptor activation and D1/D3 receptor coactivation in striatonigral neurons leads to more cAMP production by adenylyl cyclase in the striatum and GABA release in their terminals in the right hemisphere compared to the left.

View Article and Find Full Text PDF

Network-based meta-analysis and confirmation of genes ATP1A2, FXYD1, and ADCY3 associated with cAMP signaling in breast tumors compared to corresponding normal marginal tissues.

Cell Mol Biol (Noisy-le-grand)

November 2024

Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research(ACECR), Tehran, Iran.

Breast cancer (BC) is a global health concern with a growing prevalence. Since BC is a heterogeneous cancer, transcriptome analyzes were carried out on breast tumor tissues relative to their corresponding normal tissues in order to identify gene expression signatures and perform meta-analysis. Five expression profiling by array data sets from breast tumor tissues and non-tumor neighboring tissues were retrieved following a search in the GEO database (GSE70947, GSE70905, GSE10780, GSE29044, and GSE42568).

View Article and Find Full Text PDF

Role of Myeloid Cell-Specific Adenylyl Cyclase Type 7 in Lipopolysaccharide- and Alcohol-Induced Immune Responses.

Int J Mol Sci

November 2024

Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.

Clinical and experimental evidence indicates that alcohol use causes various abnormalities in the immune system and compromises immune functions. However, the mechanistic understanding of ethanol's effects on the immune system remains limited. Cyclic AMP (cAMP) regulates multiple processes, including immune responses.

View Article and Find Full Text PDF

Genomic Insights into the Role of cAMP in Carotenoid Biosynthesis: Enhancing β-Carotene Production in via Deletion.

Int J Mol Sci

November 2024

Department of Molecular Science and Technology, Advanced College of Bio-Convergence Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.

The gamma-ray-induced random mutagenesis of an engineered β-carotene-producing XL1-Blue resulted in the variant Ajou 45, which exhibits significantly enhanced β-carotene production. The whole-genome sequencing of Ajou 45 identified 55 mutations, notably including a reduction in the copy number of , encoding adenylate cyclase, a key enzyme regulating intracellular cyclic AMP (cAMP) levels. While the parental XL1-Blue strain harbors two copies of , Ajou 45 retains only one, potentially leading to reduced intracellular cAMP concentrations.

View Article and Find Full Text PDF

Red blood cells (RBCs) play a role in the regulation of vascular tone via release of adenosine triphosphate (ATP) into the vasculature in response to various stimuli. Interestingly, ApoE/LDLR double-deficient (ApoE/LDLR) mice, a murine model of atherosclerosis, display a higher exercise capacity compared to the age-matched controls. However, it is not known whether increased exercise capacity in ApoE/LDLR mice is linked to the altered ATP release from RBCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!