A numerical study is performed to examine the effect of introducing a swirling desolvation gas flow on the flow transport characteristics in an electrospray and an atmospheric pressure chemical ionization (APCI) system. An ion source having three coaxial tubes is considered: (1) an inner capillary tube to inject the liquid sample, (2) a center coaxial tube to provide a room temperature gas flow to nebulize the liquid, referred to as the nebulizing gas flow, and (3) an outer coaxial tube having a converging exit to supply a high temperature gas for droplet desolvation, referred to as the desolvation gas flow. The results show that a swirling desolvation gas flow reduces the dispersion of the nebulizing gas and suppresses turbulent diffusion. The effect of swirling desolvation flow on the trajectory of a range of droplet sizes emitted from a source is also considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13361-014-0933-9 | DOI Listing |
Am J Emerg Med
January 2025
Department of Emergency Department, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China. Electronic address:
Background: Currently, there is a deficiency in nomograms specifically designed for predicting the failure of high-flow nasal cannula (HFNC) oxygen therapy in patients with hypercapnic acute respiratory failure (hypercapnic ARF). The aim of this retrospective study is to develop and evaluate a nomogram that assesses the risk of HFNC failure in this patient population.
Methods: Patients with ARF and hypercapnia (PaCO ≥ 45 mmHg in the initial arterial blood gas) who received HFNC in the intensive care unit (ICU) from January 1, 2020 to December 31, 2023 were enrolled in this study.
PLoS One
January 2025
Chemical & Petroleum Engineering Department, United Arab Emirates University, Al Ain, United Arab Emirates.
Oil fields located in cold environments and deep-sea locations often face challenges with paraffin wax buildup in pipelines during long-distance crude oil transportation. Various strategies have been employed to address this issue, with chemical methods being the most effective and economical. However, traditional chemical inhibitors present problems due to their high toxicity and low biodegradability, leading to increased operational costs and environmental concerns.
View Article and Find Full Text PDFLangmuir
January 2025
John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.
Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.
View Article and Find Full Text PDFAm J Vet Res
January 2025
National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan.
Objective: Enhancing ventilatory effort during pulmonary function testing can help reveal flow limitations not evident in normal tidal breathing. This study aimed to assess the efficacy and tolerability of using a CO2/O2 gas mixture to enhance tidal breathing with a barometric whole-body plethysmography system in both healthy cats and those with feline lower airway disease (FLAD).
Methods: This prospective study included healthy cats and those with FLAD, which underwent pulmonary function testing and were exposed to a 10% CO2/90% O2 gas mixture in a barometric whole-body plethysmography chamber, with CO2 concentrations maintained within the target range of 5% to 10%.
Nano Lett
January 2025
Department of Physics, Shahid Beheshti University, Tehran 1635649771, Iran.
We present a method for conjugating antigens to gold nanoparticles (GNPs) during their synthesis via gas plasma, eliminating the need for chemical linkers and significantly speeding up the process (taking only 15 min). This fast, linker-free method produces biocompatible and stable GNPs, with potential for immunotherapy applications, such as antigen and antibody conjugation and drug delivery. We demonstrate the conjugation of the antigen Nestin (NES), a tumor marker, to GNPs using two approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!