A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New bonding modes of carbon and heavier group 14 atoms Si-Pb. | LitMetric

Recent theoretical studies are reviewed which show that the naked group 14 atoms E = C-Pb in the singlet (1)D state behave as bidentate Lewis acids that strongly bind two σ donor ligands L in the donor-acceptor complexes L→E←L. Tetrylones EL2 are divalent E(0) compounds which possess two lone pairs at E. The unique electronic structure of tetrylones (carbones, silylones, germylones, stannylones, plumbylones) clearly distinguishes them from tetrylenes ER2 (carbenes, silylenes, germylenes, stannylenes, plumbylenes) which have electron-sharing bonds R-E-R and only one lone pair at atom E. The different electronic structures of tetrylones and tetrylenes are revealed by charge- and energy decomposition analyses and they become obvious experimentally by a distinctively different chemical reactivity. The unusual structures and chemical behaviour of tetrylones EL2 can be understood in terms of the donor-acceptor interactions L→E←L. Tetrylones are potential donor ligands in main group compounds and transition metal complexes which are experimentally not yet known. The review also introduces theoretical studies of transition metal complexes [TM]-E which carry naked tetrele atoms E = C-Sn as ligands. The bonding analyses suggest that the group-14 atoms bind in the (3)P reference state to the transition metal in a combination of σ and π∥ electron-sharing bonds TM-E and π⊥ backdonation TM→E. The unique bonding situation of the tetrele complexes [TM]-E makes them suitable ligands in adducts with Lewis acids. Theoretical studies of [TM]-E→W(CO)5 predict that such species may becomes synthesized.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cs00073kDOI Listing

Publication Analysis

Top Keywords

theoretical studies
12
transition metal
12
group atoms
8
lewis acids
8
donor ligands
8
l→e←l tetrylones
8
tetrylones el2
8
electron-sharing bonds
8
metal complexes
8
complexes [tm]-e
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!