Background: Surgical site infections following coronary artery bypass graft (CABG) procedures pose substantial burden on patients and healthcare systems. This study aims to describe the incidence of surgical site infections and causative pathogens following CABG surgery over the period 2003-2012, and to identify risk factors for complex sternal site infections.
Methods: Routine computerised surveillance data were collected from three public hospitals in Queensland, Australia in which CABG surgery was performed between 2003 and 2012. Surgical site infection rates were calculated by types of infection (superficial/complex) and incision sites (sternal/harvest sites). Patient and procedural characteristics were evaluated as risk factors for complex sternal site infections using a logistic regression model.
Results: There were 1,702 surgical site infections (518 at sternal sites and 1,184 at harvest sites) following 14,546 CABG procedures performed. Among 732 pathogens isolated, Methicillin-sensitive Staphylococcus aureus accounted for 28.3% of the isolates, Pseudomonas aeruginosa 18.3%, methicillin-resistant Staphylococcus aureus 14.6%, and Enterobacter species 6.7%. Proportions of Gram-negative bacteria elevated from 37.8% in 2003 to 61.8% in 2009, followed by a reduction to 42.4% in 2012. Crude rates of complex sternal site infections increased over the reporting period, ranging from 0.7% in 2004 to 2.6% in 2011. Two factors associated with increased risk of complex sternal site infections were identified: patients with an ASA (American Society of Anaesthesiologists) score of 4 or 5 (reference score of 3, OR 1.83, 95% CI 1.36-2.47) and absence of documentation of antibiotic prophylaxis (OR 2.03, 95% CI 1.12-3.69).
Conclusions: Compared with previous studies, our data indicate the importance of Gram-negative organisms as causative agents for surgical site infections following CABG surgery. An increase in complex sternal site infection rates can be partially explained by the increasing proportion of patients with more severe underlying disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061097 | PMC |
http://dx.doi.org/10.1186/1471-2334-14-318 | DOI Listing |
Viruses
January 2025
Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.
View Article and Find Full Text PDFViruses
January 2025
Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.
View Article and Find Full Text PDFViruses
January 2025
Département de Virologie, Institut Pasteur de Dakar, Dakar BP 220, Senegal.
Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.
View Article and Find Full Text PDFViruses
December 2024
Laboratory of Microbiology and Biochemistry (LR16SP01), Aziza Othmana Hospital, University Tunis El Manar, Tunis 1068, Tunisia.
Coronavirus disease 2019 (COVID-19) has been associated with a significant fatality rate and persistent evolution in immunocompromised patients. In this prospective study, we aimed to determine the duration of excretion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 37 Tunisian patients with hematological malignancies (40.5% with lymphoma and 37.
View Article and Find Full Text PDFViruses
December 2024
Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.
The nucleocapsid (N) protein is the most expressed protein in later stages of SARS-CoV-2 infection with several important functions. It is translated from a subgenomic mRNA (sgmRNA) formed by template switching during transcription. A recently described translation initiation site (TIS) with a CTG codon in the leader sequence (TIS-L) is out of frame with most structural and accessory genes including the N gene and may act as a translation suppressor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!