Aims: Today's cardiac pacemakers are powered by batteries with limited energy capacity. As the battery's lifetime ends, the pacemaker needs to be replaced. This surgical re-intervention is costly and bears the risk of complications. Thus, a pacemaker without primary batteries is desirable. The goal of this study was to test whether transcutaneous solar light could power a pacemaker.
Methods And Results: We used a three-step approach to investigate the feasibility of sunlight-powered cardiac pacing. First, the harvestable power was estimated. Theoretically, a subcutaneously implanted 1 cm(2) solar module may harvest ∼2500 µW from sunlight (3 mm implantation depth). Secondly, ex vivo measurements were performed with solar cells placed under pig skin flaps exposed to a solar simulator and real sunlight. Ex vivo measurements under real sunlight resulted in a median output power of 4941 µW/cm(2) [interquartile range (IQR) 3767-5598 µW/cm(2), median skin flap thickness 3.0 mm (IQR 2.7-3.3 mm)]. The output power strongly depended on implantation depth (ρSpearman = -0.86, P < 0.001). Finally, a batteryless single-chamber pacemaker powered by a 3.24 cm(2) solar module was implanted in vivo in a pig to measure output power and to pace. In vivo measurements showed a median output power of >3500 µW/cm(2) (skin flap thickness 2.8-3.84 mm). Successful batteryless VVI pacing using a subcutaneously implanted solar module was performed.
Conclusion: Based on our results, we estimate that a few minutes of direct sunlight (irradiating an implanted solar module) allow powering a pacemaker for 24 h using a suitable energy storage. Thus, powering a pacemaker by sunlight is feasible and may be an alternative energy supply for tomorrow's pacemakers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/europace/euu127 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Nankai University, Colege of Chemistry, CHINA.
Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Military Institute of Engineer Technology, 136 Obornicka Str, 50-961 Wroclaw, Poland.
The main goal of this review paper is to show the advantages and challenges of photovoltaic cells/modules/panels and scintillators towards carbon footprint reduction for ecological safety. Briefly, the various types of solar-driven CO conversion processes are shown as a new concept of CO reduction. The health toxicity and environmental effects of scintillators, along with risks associated with use and disposal, are presented, taking into consideration inorganic and organic materials.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Faculty of Civil Engineering and Transport, Poznań University of Technology, 60-965 Poznań, Poland.
The interest in alternative energy sources, including the use of solar radiation energy, is growing year by year. Currently, the most frequently installed photovoltaic modules are made of single-crystalline silicon solar cells (sc-Si). However, one of the latest solutions are perovskite solar cells (PSC), which are considered the future of photovoltaics.
View Article and Find Full Text PDFWaste Manag Res
December 2024
Institute of Environmental Engineering, Kaunas University of Technology, Kaunas, Lithuania.
High-quality recycling of photovoltaic (PV) modules starts with a delamination process. It aims to remove the encapsulation layer between glass and solar cells. Many studies have investigated the delamination of ethylene-vinyl acetate encapsulant, whereas the delamination of polyolefin elastomer (POE) encapsulation in solar modules remains a research gap.
View Article and Find Full Text PDFAdv Mater
December 2024
College of Chemistry and Chemical Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
All-polymer organic solar cells (OSCs) have shown unparalleled application potential in the field of flexible wearable electronics in recent years due to the excellent mechanical and photovoltaic properties. However, the small molecule acceptors after polymerization in still retain some mechanical and aggregation properties of the small molecule, falling short of the ductility requirements for flexible devices. Here, based on the multimodal energy dissipation theory, the mechanical and photovoltaic properties of flexible devices are co-enhanced by adding the thermoplastic elastomer material (polyurethane, PU) to the PM6:PBQx-TF:PY-IT-based active layer films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!