Cherubism (OMIM# 118400) is a genetic disorder with excessive jawbone resorption caused by mutations in SH3 domain binding protein 2 (SH3BP2), a signaling adaptor protein. Studies on the mouse model for cherubism carrying a P416R knock-in (KI) mutation have revealed that mutant SH3BP2 enhances tumor necrosis factor (TNF)-α production and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in myeloid cells. TNF-α is expressed in human cherubism lesions, which contain a large number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, and TNF-α plays a critical role in inflammatory bone destruction in homozygous cherubism mice (Sh3bp2(KI/KI) ). The data suggest a pathophysiological relationship between mutant SH3BP2 and TNF-α-mediated bone loss by osteoclasts. Therefore, we investigated whether P416R mutant SH3BP2 is involved in TNF-α-mediated osteoclast formation and bone loss. Here, we show that bone marrow-derived M-CSF-dependent macrophages (BMMs) from the heterozygous cherubism mutant (Sh3bp2(KI/+) ) mice are highly responsive to TNF-α and can differentiate into osteoclasts independently of RANKL in vitro by a mechanism that involves spleen tyrosine kinase (SYK) and phospholipase Cγ2 (PLCγ2) phosphorylation, leading to increased nuclear translocation of NFATc1. The heterozygous cherubism mutation exacerbates bone loss with increased osteoclast formation in a mouse calvarial TNF-α injection model as well as in a human TNF-α transgenic mouse model (hTNFtg). SH3BP2 knockdown in RAW264.7 cells results in decreased TRAP-positive multinucleated cell formation. These findings suggest that the SH3BP2 cherubism mutation can cause jawbone destruction by promoting osteoclast formation in response to TNF-α expressed in cherubism lesions and that SH3BP2 is a key regulator for TNF-α-induced osteoclastogenesis. Inhibition of SH3BP2 expression in osteoclast progenitors could be a potential strategy for the treatment of bone loss in cherubism as well as in other inflammatory bone disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262741 | PMC |
http://dx.doi.org/10.1002/jbmr.2295 | DOI Listing |
PLoS Genet
January 2025
Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia.
Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.
View Article and Find Full Text PDFAustralas J Ageing
March 2025
Faculty of Nutrition, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
Objective: Bone mineral density changes during the life span, rising rapidly during adolescence, plateauing around 30 years of age and decreasing in later years. Life events such as pregnancy and lactation temporarily reduce bone density, and their long-term effects on osteoporosis development are still unclear. This study aimed to analyse the association between pregnancy in adolescence and osteoporosis in aged women.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.
Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.
Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.
J Periodontol
January 2025
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
Background: The clinical evidence about alveolar ridge changes following molar extraction and how the alveolar bone morphology influences the ridge dimensional changes remains limited.
Methods: A total of 192 patients with 199 molar extractions were included in this retrospective study. Cone-beam computed tomography (CBCT) images of patients were obtained 0-3 months pre extraction and 6-12 months post extraction.
Clin Oral Implants Res
January 2025
Medical Center - University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Objectives: The purpose of the present prospective case series was to investigate the clinical and radiological outcome of one-piece zirconia implants fabricated from 3Y-TZP with a moderately roughened endosseous surface (Sa = 1.24 μm) to support three-unit fixed dental prostheses (FDP) after five years in function.
Materials And Methods: Twenty-seven patients received a total of 54 implants in a one-stage surgery with immediate provisionalization.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!