Rhizobia and legumes establish symbiotic interactions leading to the production of root nodules, in which bacteria fix atmospheric nitrogen for the plant's benefit. This symbiosis is efficient because of the high rhizobia population within nodules. Here, we investigated how legumes accommodate such bacterial colonization. We used a reverse genetic approach to identify a Medicago truncatula gene, SymCRK, which encodes a cysteine-rich receptor-like kinase that is required for rhizobia maintenance within the plant cells, and performed detailed phenotypic analyses of the corresponding mutant. The Medicago truncatula symCRK mutant developed nonfunctional and necrotic nodules. A nonarginine asparate (nonRD) motif, typical of receptors involved in innate immunity, is present in the SymCRK kinase domain. Similar to the dnf2 mutant, bacteroid differentiation defect, defense-like reactions and early senescence were observed in the symCRK nodules. However, the dnf2 and symCRK nodules differ by their degree of colonization, which is higher in symCRK. Furthermore, in contrast to dnf2, symCRK is not a conditional mutant. These results suggest that in M. truncatula at least two genes are involved in the symbiotic control of immunity. Furthermore, phenotype differences between the two mutants suggest that two distinct molecular mechanisms control suppression of plant immunity during nodulation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.12881DOI Listing

Publication Analysis

Top Keywords

receptor-like kinase
8
early senescence
8
defense-like reactions
8
medicago truncatula
8
symcrk nodules
8
dnf2 symcrk
8
symcrk
7
nodules
5
nonrd receptor-like
4
kinase prevents
4

Similar Publications

Methyl jasmonate is a plant signaling molecule involved in a wide range of functions, including stress responses. This study investigates the relative differential expression of microRNAs and their target genes in response to methyl jasmonate treatment of Scots pine needles. A combined strategy of high-throughput sequencing and in silico prediction of potential target genes was implemented.

View Article and Find Full Text PDF

Plant lectin receptor-like kinases (LecRLKs) are plant membrane protein receptor kinases. Lectin-like receptor kinases play a crucial role in regulating plant growth, development, and responses to environmental stimuli. It can rapidly respond to both biotic and abiotic stresses while mediating mechanisms of plant immune responses.

View Article and Find Full Text PDF

A pair of LysM receptors mediates symbiosis and immunity discrimination in Marchantia.

Cell

January 2025

New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences and Technology, Shanghai Tech University, Shanghai 201210, China. Electronic address:

Most land plants form symbioses with microbes to acquire nutrients but also must restrict infection by pathogens. Here, we show that a single pair of lysin-motif-containing receptor-like kinases, MpaLYR and MpaCERK1, mediates both immunity and symbiosis in the liverwort Marchantia paleacea. MpaLYR has a higher affinity for long-chain (CO7) versus short-chain chitin oligomers (CO4).

View Article and Find Full Text PDF

Two leucine-rich repeat receptor-like kinases initiate herbivory defense responses in tea plants.

Hortic Res

January 2025

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China.

Leucine-rich repeat receptor-like kinases (LRR-RLKs) have emerged as key regulators of herbivory perception and subsequent defense initiation. While their functions in grass plants have been gradually elucidated, the roles of herbivory-related LRR-RLKs in woody plants remain largely unknown. In this study, we mined the genomic and transcriptomic data of tea plants () and identified a total of 307 CsLRR-RLK members.

View Article and Find Full Text PDF

Peptide hormones in plants.

Mol Hortic

January 2025

Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!