Riboswitches based on kissing complexes for the detection of small ligands.

Angew Chem Int Ed Engl

Univ. Bordeaux, IECB, Laboratoire ARNA, 2 rue Robert Escarpit, 33607 Pessac (France); Inserm U869, Laboratoire ARNA, 146 rue Léo Saignat, 33076 Bordeaux (France).

Published: July 2014

Biosensors derived from aptamers were designed for which folding into a hairpin shape is triggered by binding of the cognate ligand. These aptamers (termed aptaswitches) thus switch between folded and unfolded states in the presence and absence of the ligand, respectively. The apical loop of the folded aptaswitch is recognized by a second hairpin called the aptakiss through loop-loop or kissing interactions, whereas the aptakiss does not bind the unfolded aptaswitch. Therefore, the formation of a kissing complex signals the presence of the ligand. Aptaswitches were designed that enable the detection of GTP and adenosine in a specific and quantitative manner by surface plasmon resonance when using a grafted aptakiss or in solution by anisotropy measurement with a fluorescently labeled aptakiss. This approach is generic and can potentially be extended to the detection of any molecule for which hairpin aptamers have been identified, as long as the apical loop is not involved in ligand binding.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201400402DOI Listing

Publication Analysis

Top Keywords

apical loop
8
riboswitches based
4
based kissing
4
kissing complexes
4
complexes detection
4
detection small
4
small ligands
4
ligands biosensors
4
biosensors derived
4
derived aptamers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!