Corneal dystrophy-causing SLC4A11 mutants: suitability for folding-correction therapy.

Hum Mutat

Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada.

Published: September 2014

SLC4A11 mutations cause some cases of the corneal endothelial dystrophies, congenital hereditary endothelial corneal dystrophy type 2 (CHED2), Harboyan syndrome (HS), and Fuchs endothelial corneal dystrophy (FECD). SLC4A11 protein was recently identified as facilitating water flux across membranes. SLC4A11 point mutations usually cause SLC4A11 misfolding and retention in the endoplasmic reticulum (ER). We set about to test the feasibility of rescuing misfolded SLC4A11 protein to the plasma membrane as a therapeutic approach. Using a transfected HEK293 cell model, we measured functional activity present in cells expressing SLC4A11 variants in combinations representing the state found in CHED2 carriers, affected CHED2, FECD individuals, and unaffected individuals. These cells manifest respectively about 60%, 5%, and 25% of the water flux activity, relative to the unaffected (WT alone). ER-retained CHED2 mutant SLC4A11 protein could be rescued to the plasma membrane, where it conferred 25%-30% of WT water flux level. Further, some ER-retained CHED2 mutants expressed at 30°C supported increased water flux compared with 37°C cultures. Caspase activation and cell vitality assays revealed that expression of SLC4A11 mutants in HEK293 cells does not induce cell death. We conclude that therapeutics able to increase cell surface localization of ER-retained SLC4A11 mutants hold promise to treat CHED2 and FECD patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.22601DOI Listing

Publication Analysis

Top Keywords

water flux
16
slc4a11 mutants
12
slc4a11 protein
12
slc4a11
10
endothelial corneal
8
corneal dystrophy
8
plasma membrane
8
ched2 fecd
8
er-retained ched2
8
ched2
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!