Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Avian osteoblasts have been isolated particularly from chicken embryo, but data about other functional tissue sources of adult avian osteoblast precursors are missing. The method of preparation of pigeon osteoblasts is described in this study. We demonstrate that pigeon cancellous bone derived osteoblasts have particular proliferative capacity in vitro in comparison to mammalian species and developed endogenous ALP. Calcium deposits formation in vitro was confirmed by alizarin red staining. Only a few studies have attempted to investigate bone grafting and treatment of bone loss in birds. Lack of autologous bone grafts in birds has prompted investigation into the use of avian xenografts for bone augmentation. Here we present a method of xenografting of ostrich demineralised cancellous bone scaffold seeded with allogeneic adult pigeon osteoblasts. Ostrich demineralised cancellous bone scaffold supported proliferation of pigeon osteoblasts during two weeks of co - cultivation in vitro. Scanning electron microscopy demonstrated homogeneous adult pigeon osteoblasts attachment and distribution on the surface of xenogeneic ostrich demineralised cancellous bone. Our preliminary in vitro results indicate that demineralised cancellous bone from ostrich tibia could provide an effective biological support for growth and proliferation of allogeneic osteoblasts derived from cancellous bone of pigeons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11259-014-9607-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!