We demonstrated the solution-processed single-walled carbon nanotube (SWNT) source-drain electrodes patterned using a plasma-enhanced detachment patterning method for high-performance organic transistors and inverters. The high-resolution SWNT electrode patterning began with the formation of highly uniform SWNT thin films on a hydrophobic silanized substrate. The SWNT source-drain patterns were then formed by modulating the interfacial energies of the prepatterned elastomeric mold and the SWNT thin film using oxygen plasma. The SWNT films were subsequently selectively delaminated using a rubber mold. The patterned SWNTs could be used as the source-drain electrodes for both n-type PTCDI-C8 and p-type pentacene field-effect transistors (FETs). The n- and p-type devices exhibited good and exactly matched electrical performances, with a field-effect mobility of around 0.15 cm(2) V(-1) s(-1) and an ON/OFF current ratio exceeding 10(6). The single electrode material was used for both the n and p channels, permitting the successful fabrication of a high-performance complementary inverter by connecting a p-type pentacene FET to an n-type PTCDI-C8 FET. This patterning technique was simple, inexpensive, and easily scaled for the preparation of large-area electrode micropatterns for flexible microelectronic device fabrication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am5020315 | DOI Listing |
Front Chem
January 2025
Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan.
This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).
View Article and Find Full Text PDFLaser ablation propulsion is an important micro-propulsion system for microsatellites. Polymers with carbon added and carbon-based nanomaterial have been demonstrated as propellants with high impulse coupling coefficient (C). Among them, the carbon nanotube film exhibits a low ablation threshold fluence of 25 mJ/cm, which shows its potential for propulsion under low laser fluence.
View Article and Find Full Text PDFNano Lett
January 2025
Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance of Research and Technology, 1 CREATE Way, #03-06, Singapore 138602, Singapore.
Fluorescent nanosensors operating have shown recent success toward informing basic plant biology and agricultural applications. We developed near-infrared (NIR) fluorescent nanosensors using the Corona Phase Molecular Recognition (CoPhMoRe) technique that distinguish Fe(II) and Fe(III) species with limit of detection as low as 10 nM. An anionic poly(p-phenyleneethynylene) (PPE) polyelectrolyte wrapped single-walled carbon nanotube (SWNT) shows up to 200% turn-on and 85% turn-off responses to Fe(II) and Fe(III), respectively, allowing spatial and temporal analysis of iron uptake in both foliar and root-to-shoot pathways.
View Article and Find Full Text PDFbioRxiv
January 2025
Chemical and Biological Engineering - Iowa State University, 618 Bissell Rd, Ames, IA 50011.
Proteins can be rapidly prototyped with cell-free expression (CFE) but in most cases there is a lack of probes or assays to measure their function directly in the cell lysate, thereby limiting the throughput of these screens. Increased throughput is needed to build standardized, sequence to function data sets to feed machine learning guided protein optimization. Herein, we describe the use of fluorescent single-walled carbon nanotubes (SWCNT) as effective probes for measuring protease activity directly in cell-free lysate.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea.
Carbon nanotubes (CNTs) have drawn great attention as promising candidates for realizing next-generation printed thermoelectrics (TEs). However, the dispersion instability and resulting poor printability of CNTs have been major issues for their practical processing and device applications. In this work, we investigated the TE characteristics of water-processable carboxymethyl cellulose (CMC) and single-walled CNT (SWCNT) composite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!