Mesenchymal stem cells (MSCs) are a population of cells harboring in many tissues with the ability to differentiate toward many different lineages. Unraveling the molecular profile of MSCs is of great importance due to the fact that these cells are very often used in preclinical and clinical studies. We have previously reported the expression of insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) an oncofetal mRNA-binding protein-in different stem cell types such as bone marrow (BM)-MSC and umbilical cord blood (UCB)-hematopoietic stem cells. Here, we demonstrate that MSCs of adipose tissue, BM, and UC origin have a differential pattern of IGF2BP1 and ten-eleven-translocate 1/2 (TET1/2) expression that could correlate with their proliferation potential. Upon IGF2BP1 interference, a significant reduction of cell proliferation is observed, accompanied by reduced expression of c-MYC and GLI1 and increased p21. We also present, for the first time, evidence that IGF2BP1 is epigenetically regulated by TET1 and TET2 demethylases. Specifically, we show that TET1 directly binds to the promoter of IGF2BP1 gene and affects the hydroxymethylation status of its promoter. These results indicate that IGF2BP1 and TET1/2 contribute to the stemness of MSCs, at least regarding their proliferative potential.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2013.0604DOI Listing

Publication Analysis

Top Keywords

stem cells
12
mesenchymal stem
8
igf2bp1
7
cells
5
igf2bp1 expression
4
expression human
4
human mesenchymal
4
stem
4
cells proliferation
4
proliferation epigenetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!