High-power ultrasound is a versatile technology which can potentially be used in many food processing applications including food preservation. This is part 2 of a series of review articles dealing with the effectiveness of nonthermal food processing technologies in food preservation focusing on their effect on enzymes. Typically, ultrasound treatment alone does not efficiently cause microbial or enzyme inactivation sufficient for food preservation. However, combined with mild heat with or without elevated pressure (P ≤ 500 kPa), ultrasound can effectively inactivate enzymes and microorganisms. Synergistic effects between ultrasound and mild heat have been reported for the inactivation of both enzymes and microorganisms. The application of ultrasound has been shown to enhance the rate of inactivation of quality degrading enzymes including pectin methylesterase (PME), polygalacturonase (PG), peroxidase (POD), polyphenol oxidase (PPO), and lipoxygenase (LOX) at mild temperature by up to 400 times. Moreover, ultrasound enables the inactivation of relatively heat-resistant enzymes such as tomato PG1 and thermostable orange PME at mild temperature conditions. The extent to which ultrasound enhances the inactivation rate depends on the type of enzyme, the medium in which the enzyme is suspended, and the processing condition including frequency, ultrasonic intensity, temperature, and pressure. The physical and chemical effects of cavitation are considered to be responsible for the ultrasound-induced inactivation of enzymes, although the dominant mechanism depends on the structure of the enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2011.586134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!