Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Today, many MRI reconstruction techniques exist for undersampled MRI data. Regularization-based techniques inspired by compressed sensing allow for the reconstruction of undersampled data that would lead to an ill-posed reconstruction problem. Parallel imaging enables the reconstruction of MRI images from undersampled multi-coil data that leads to a well-posed reconstruction problem. Autocalibrating pMRI techniques encompass pMRI techniques where no explicit knowledge of the coil sensivities is required. A first purpose of this paper is to derive a novel autocalibration approach for pMRI that allows for the estimation and use of smooth, but high-bandwidth coil profiles instead of a compactly supported kernel. These high-bandwidth models adhere more accurately to the physics of an antenna system. The second purpose of this paper is to demonstrate the feasibility of a parameter-free reconstruction algorithm that combines autocalibrating pMRI and compressed sensing. Therefore, we present several techniques for automatic parameter estimation in MRI reconstruction. Experiments show that a higher reconstruction accuracy can be had using high-bandwidth coil models and that the automatic parameter choices yield an acceptable result.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051637 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098937 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!