Most wearable activity recognition systems assume a predefined sensor deployment that remains unchanged during runtime. However, this assumption does not reflect real-life conditions. During the normal use of such systems, users may place the sensors in a position different from the predefined sensor placement. Also, sensors may move from their original location to a different one, due to a loose attachment. Activity recognition systems trained on activity patterns characteristic of a given sensor deployment may likely fail due to sensor displacements. In this work, we innovatively explore the effects of sensor displacement induced by both the intentional misplacement of sensors and self-placement by the user. The effects of sensor displacement are analyzed for standard activity recognition techniques, as well as for an alternate robust sensor fusion method proposed in a previous work. While classical recognition models show little tolerance to sensor displacement, the proposed method is proven to have notable capabilities to assimilate the changes introduced in the sensor position due to self-placement and provides considerable improvements for large misplacements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118358 | PMC |
http://dx.doi.org/10.3390/s140609995 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125.
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.
View Article and Find Full Text PDFChembiochem
January 2025
Ludwig-Maximilians-Universitat Munchen, Chemistry, Butenandstr. 5-13, 81377, Muenchen, GERMANY.
In the last decade the important role of small non-coding RNAs such as micro RNAs (miRs) in gene regulation in healthy and disease states became more and more evident. The miR-200-family of miRs has been shown to play a critical role in many diseases such as cancer and neurodegenerative disorders and could be potentially important for diagnosis and treatment. However, the size of miRs of about ~21-23nt provide challenges for their investigation.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland.
In recent years, civil engineering has increasingly embraced communication tools for automation, with sensors playing a pivotal role, especially in structural health monitoring (SHM). These sensors enable precise data acquisition, measuring parameters like force, displacement, and temperature and transmit data for timely interventions to prevent failures. This approach reduces reliance on manual inspections, offering more accurate outcomes.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Railway Research, University of Huddersfield, Huddersfield HD1 3DH, UK.
Conventional floating bridge systems used during emergency repairs, such as during wartime or after natural disasters, typically rely on passive rubber bearings or semi-active control systems. These methods often limit traffic speed, stability, and safety under dynamic conditions, including varying vehicle loads and fluctuating water levels. To address these challenges, this study proposes a novel Hydraulic Self-Adaptive Bearing System (HABS).
View Article and Find Full Text PDFSensors (Basel)
December 2024
China Construction Steel Engineer Co., Ltd., Shenzhen 518118, China.
Structural design usually adopts uniform temperature action. However, during the actual construction of the structure, the temperature field acting on the structure is inhomogeneous. Therefore, the simulation of the construction of statically indeterminate steel structures considering only the uniform temperature field cannot truly reflect the temperature action after structural molding and the evolution of the stress performance of the temporary stress system of structural construction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!