Aluminate garnet phosphors Ca2GdZr2(AlO4)3:Ce(3+) (CGZA:Ce(3+)) for solid-state white lighting sources are reported. The crystal structure and Mulliken bonding population of the CGZA:Ce(3+) have been analyzed. The larger 5d ((2)D) barycenter shift εc and smaller phenomenological parameter 10Dq of Ce(3+) in CGZA are related to the larger covalent character of Ce-O. The tuning spectral properties of the Ce(3+)-doped CGZA-based isostructural phosphors are presented. The splitting of cubic crystal field energy level (2)Eg in Ca2REZr2(AlO4)3:Ce(3+) (CREZA:Ce(3+)) (RE = Lu, Y, and Gd) increases as the radius of RE(3+) increases, and the splitting of (2)Eg may dominate the difference of spectroscopic red-shift D(A) in CREZA:Ce(3+). The splitting of the (2)Eg in CaGd2ZrSc(AlO4)3:Ce(3+) (CGZSA:Ce(3+)) phosphors increases seemly due to the decreasing of the covalent character of Ce-O. Thermal quenching properties of Ce(3+)-doped CGZA-based isostructural phosphors are also presented and analyzed. For CREZA:Ce(3+) phosphors, the increasing of the radius of RE(3+) results in an enhancement of thermal quenching. The quenching of CGZSA:Ce(3+) is obviously stronger mainly due to the smaller energy difference between the lowest 5d excited state and 4f ground state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic500153u | DOI Listing |
Inorg Chem
January 2025
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
The salt metathesis reaction involving a diamine-based antimony chloride precursor with sodium arsaethynolate in the presence of PMe leads to the formation of stibanyl-functionalized PMe-arsinidene (). Detailed analyses through single-crystal X-ray diffraction and density functional theory of confirm the presence of covalent Sb-As bonds and reveal its polarized nature with a multiple-bond character. In contrast to the formation of complex , substituting PMe with xylyl isocyanide or 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene () produces an isocyanide-arsinidene adduct () and an -arsaketene complex (), respectively.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry and Molecular Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
ArBO ( = 1-3) complexes have been prepared and subjected to spectroscopic characterization in the gas phase. Mass-selected infrared photodissociation spectroscopy, in combination with theoretical calculations, reveals the coexistence of two nearly isoenergetic structural isomers in ArBO. One isomer entails two equivalent Ar atoms chemically bound to BO, while the other features an ArBO core ion accompanied by a weakly tagging argon atom.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Chemistry Department, Southern Methodist University, Dallas, Texas, USA.
Using the QM/MM methodology and a local mode analysis, we investigated a character and a strength of FeS bonds of heme groups in oxidized and reduced forms of Bacterioferritin from Azotobacter vinelandii. The strength of the FeS bonds was correlated with a bond length, an energy density at a bond critical point, and a charge difference of the F and S atoms. Changing the oxidation state from ferrous to ferric generally makes the FeS bonds weaker, longer, more covalent, and more polar.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by non-covalent contacts and interactions in assembly intermediates, which serve as blocks to build a symmetric capsid.
View Article and Find Full Text PDFChemistry
December 2024
Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece.
Covalent organic frameworks (COFs) are considered advanced class materials due to their exotic structural and optical properties. The abundance of starting monomers with variable linkage motifs may give rise to multiple conformations in either 2D or 3D fashion. Tailoring of the abovementioned properties has facilitated the application of COFs in a wide range of applications, which are strongly correlated with energy conversion schemes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!