Lithium iron borate (LiFeBO3) has a high theoretical specific capacity (220 mAh/g), which is competitive with leading cathode candidates for next-generation lithium-ion batteries. However, a major factor making it difficult to fully access this capacity is a competing oxidative process that leads to degradation of the LiFeBO3 structure. The pristine, delithiated, and degraded phases of LiFeBO3 share a common framework with a cell volume that varies by less than 2%, making it difficult to resolve the nature of the delithiation and degradation mechanisms by conventional X-ray powder diffraction studies. A comprehensive study of the structural evolution of LiFeBO3 during (de)lithiation and degradation was therefore carried out using a wide array of bulk and local structural characterization techniques, both in situ and ex situ, with complementary electrochemical studies. Delithiation of LiFeBO3 starts with the production of LitFeBO3 (t ≈ 0.5) through a two-phase reaction, and the subsequent delithiation of this phase to form Lit-xFeBO3 (x < 0.5). However, the large overpotential needed to drive the initial two-phase delithiation reaction results in the simultaneous observation of further delithiated solid-solution products of Lit-xFeBO3 under normal conditions of electrochemical cycling. The degradation of LiFeBO3 also results in oxidation to produce a Li-deficient phase D-LidFeBO3 (d ≈ 0.5, based on the observed Fe valence of ∼2.5+). However, it is shown through synchrotron X-ray diffraction, neutron diffraction, and high-resolution transmission electron microscopy studies that the degradation process results in an irreversible disordering of Fe onto the Li site, resulting in the formation of a distinct degraded phase, which cannot be electrochemically converted back to LiFeBO3 at room temperature. The Li-containing degraded phase cannot be fully delithiated, but it can reversibly cycle Li (D-Lid+yFeBO3) at a thermodynamic potential of ∼1.8 V that is substantially reduced relative to the pristine phase (∼2.8 V).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic500169g | DOI Listing |
J Am Chem Soc
January 2025
Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
In situ polymerization strategies hold great promise for enhancing the physical interfacial stability in solid-state batteries, yet (electro)chemical degradation of polymerized interfaces, especially at high voltages, remains a critical challenge. Herein, we find interphase engineering is crucial for the polymerization process and polymer stability and pioneer an in situ polymerization-fluorination (Poly-FR) strategy to create durable interfaces with excellent physical and (electro)chemical stabilities, achieved by designing a bifunctional initiator for both polymerization and on-surface lithium donor reactions. The integrated in situ fluorination converts LiCO impurities on LiNiCoMnO (NCM811) surfaces into LiF-rich interphases, effectively inhibiting the aggressive (de)lithiation intermediates and protecting the interface from underlying chemical degradation, thereby surpassing the stability limitations of polymerization alone.
View Article and Find Full Text PDFNano Lett
January 2025
Tata Institute of Fundamental Research-Hyderabad, Sy No. 36/P Serilingampally Mandal, Hyderabad 500046, India.
Adv Sci (Weinh)
December 2024
Institute of Materials Science, Technische Universität Darmstadt, Peter-Grünberg-Str. 2, D-64287, Darmstadt, Germany.
The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
Surface engineering is sought to stabilize nickel-rich layered oxide cathodes in high-energy-density lithium-ion batteries, which suffer from severe surface oxygen loss and rapid structure degradation, especially during deep delithiation at high voltages or high temperatures. Here, we propose a well-designed oxygen-constraining strategy to address the crisis of oxygen evolution. By integrating a La, Fe gradient diffusion layer and a LaFeO coating into the Ni-rich layered particles, along with incorporating an antioxidant binder into the electrodes, three progressive lines of defense are constructed: immobilizing the lattice oxygen at the subsurface, blocking the released oxygen at the interface, and capturing the residual singlet oxygen on the external surface.
View Article and Find Full Text PDFAdv Mater
December 2024
Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany.
Silicon is a promising negative electrode material for solid-state batteries (SSBs) due to its high specific capacity and ability to prevent lithium dendrite formation. However, SSBs with silicon electrodes currently suffer from poor cycling stability, despite chemical engineering efforts. This study investigates the cycling failure mechanism of composite Si/LiPSCl electrodes by decoupling the effects of interface chemical degradation and mechanical cracking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!