The Gram-positive bacterium Streptococcus pneumoniae is the main causative agent of bacterial meningitis. S. pneumoniae is thought to invade the central nervous system via the bloodstream by crossing the vascular endothelium of the blood-brain barrier. The exact mechanism by which pneumococci cross endothelial cell barriers before meningitis develops is unknown. Here, we investigated the role of PECAM-1/CD31, one of the major endothelial cell adhesion molecules, in S. pneumoniae adhesion to vascular endothelium of the blood-brain barrier. Mice were intravenously infected with pneumococci and sacrificed at various time points to represent stages preceding meningitis. Immunofluorescent analysis of brain tissue of infected mice showed that pneumococci colocalized with PECAM-1. In human brain microvascular endothelial cells (HBMEC) incubated with S. pneumoniae, we observed a clear colocalization between PECAM-1 and pneumococci. Blocking of PECAM-1 reduced the adhesion of S. pneumoniae to endothelial cells in vitro, implying that PECAM-1 is involved in pneumococcal adhesion to the cells. Furthermore, using endothelial cell protein lysates, we demonstrated that S. pneumoniae physically binds to PECAM-1. Moreover, both in vitro and in vivo PECAM-1 colocalizes with the S. pneumoniae adhesion receptor pIgR. Lastly, immunoprecipitation experiments revealed that PECAM-1 can physically interact with pIgR. In summary, we show for the first time that blood-borne S. pneumoniae colocalizes with PECAM-1 expressed by brain microvascular endothelium and that, in addition, they colocalize with pIgR. We hypothesize that this interaction plays a role in pneumococcal binding to the blood-brain barrier vasculature prior to invasion into the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187830PMC
http://dx.doi.org/10.1128/IAI.00046-14DOI Listing

Publication Analysis

Top Keywords

endothelial cell
16
blood-brain barrier
16
vascular endothelium
12
endothelium blood-brain
12
pneumoniae
9
cell adhesion
8
streptococcus pneumoniae
8
pneumoniae adhesion
8
pecam-1
8
brain microvascular
8

Similar Publications

Vascularization of human islets by adaptable endothelium for durable and functional subcutaneous engraftment.

Sci Adv

January 2025

Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca influx.

View Article and Find Full Text PDF

The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life.

View Article and Find Full Text PDF

Background: Inflammation is a driver of thrombosis, but the phenomenon of thromboinflammation has been defined only recently, bringing together the multiple pathways involved. models can support the development of new therapeutics targeting the endothelium and also assess the existing immunomodulatory drugs, such as hydroxychloroquine, in modulating the inflammation-driven endothelial prothrombotic phenotype.

Objectives: To develop a model for thrombin generation (TG) on the surface of human endothelial cells (ECs) to assess pro/antithrombotic properties in response to inflammation.

View Article and Find Full Text PDF

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments.

Bioact Mater

May 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.

Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!