Milk coagulation is an important processing trait, being the basis for production of both cheese and fermented products. There is interest in including technological properties of these products in the breeding goal for dairy cattle. The aim of the present study was therefore to estimate genetic parameters for milk coagulation properties, including both rennet- and acid-induced coagulation, in Swedish Red dairy cattle using genomic relationships. Morning milk samples and blood samples were collected from 395 Swedish Red cows that were selected to be as genetically unrelated as possible. Using a rheometer, milk samples were analyzed for rennet- and acid-induced coagulation properties, including gel strength (G'), coagulation time, and yield stress (YS). In addition to the technological traits, milk composition was analyzed. A binary trait was created to reflect that milk samples that had not coagulated 40min after rennet addition were considered noncoagulating milk. The cows were genotyped by using the Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA). Almost 600,000 markers remained after quality control and were used to construct a matrix of genomic relationships among the cows. Multivariate models including fixed effects of herd, lactation stage, and parity were fitted using the ASReml software to obtain estimates of heritabilities and genetic and phenotypic correlations. Heritability estimates (h(2)) for G' and YS in rennet and acid gels were found to be high (h(2)=0.38-0.62) and the genetic correlations between rennet-induced and acid-induced coagulation properties were weak but favorable, with the exception of YSrennet with G'acid and YSacid, both of which were strong. The high heritability (h(2)=0.45) for milk coagulating ability expressed as a binary trait suggests that noncoagulation could be eliminated through breeding. Additionally, the results indicated that the current breeding objective could increase the frequency of noncoagulating milk and lead to deterioration of acid-induced coagulation through unfavorable genetic associations with protein content (0.38) and milk yield (-0.61 to -0.71), respectively. The outcome of this study suggests that by including more detailed compositional traits genetically associated with milk coagulation or by including milk coagulation properties directly within the breeding goal, it appears possible to breed cows that produce milk better suited for production of cheese and fermented products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2014-7996 | DOI Listing |
Int J Biol Macromol
December 2024
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. Electronic address:
In this study, a novel acid-induced heat-set soy protein hydrolysate (SPH) gel was successfully developed. The effects of protein (7 and 8 wt%) and glucono-δ-lactone (GDL, 4, 6, 8, and 10 wt%) concentrations on its aggregation and gelation behaviors were investigated by evaluating the structural, rheological, textural, and physical properties of the SPH gel. The structural properties revealed that GDL promoted the formation of SPH aggregates and gels, primarily via disulfide bonds and hydrophobic interactions, which were closely related to the unfolding of the protein structure, exposed hydrophobic groups, decreased protein solubility, and increased particle size and turbidity during the heating process.
View Article and Find Full Text PDFFood Res Int
December 2024
Section of Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Copenhagen, Denmark. Electronic address:
Platelets
December 2024
Department of Cardiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
J Dairy Res
December 2024
Department of Dairy Chemistry, Faculty of Dairy Technology, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India.
An attempt was made to develop a novel dairy-based dip-like product from heat-acid-induced milk gel and whey. Based upon preliminary trials, the combination of cream (15-35%), whey (60-70%) and common salt (0.8-1.
View Article and Find Full Text PDFJ Sci Food Agric
October 2024
College of Food Science, Southwest University, Chongqing, China.
Background: Soy protein isolate (SPI) gels formed using a single coagulant often have poor water-holding capacity (WHC) and low hardness, making them fragile and unsuitable for transportation and storage. Adding compound coagulants or polysaccharides can improve the gelation properties of SPI gels induced by gluconolactone (GDL). This study explores the impact of oxidized konjac glucomannan (OKGM) on the physicochemical and structural properties of GDL-induced SPI gels, with the aim of evaluating the potential of OKGM for enhancing the overall quality and stability of these gels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!