Ca(2+) is an ubiquitous intracellular molecule which is used as a second messenger to control many physiological activities in plant cells. In the present work, the relationship between calcium localization and the hypersensitive response (HR)one of the most crucial and indispensable pathway to resist a pathogenwas studied in the wheat-wheat strip rust system using cytochemical technique. Our results show that calcium is involved in the interaction between wheat and wheat stripe rust. In the incompatible interaction associated with necrosis of host mesophyll cells, an influx of Ca(2+) from the intercellular space to the cytoplasm and finally an efflux to the intercellular space again was detected in an incompatible interaction. Calcium precipitates were also observed in mesophyll cells adjacent to necrotic cells. On the contrary, calcium flow was not significantly altered in a compatible interaction. These results suggest that calcium might induce HR as a secondary messenger in the incompatible interaction of wheat and wheat stripe rust.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-014-0659-3 | DOI Listing |
BMC Bioinformatics
January 2025
Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.
Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada.
Membrane incompatibility poses significant health risks, including severe complications and potential fatality. Surface modification of membranes has emerged as a pivotal technology in the membrane industry, aiming to improve the hemocompatibility and performance of dialysis membranes by mitigating undesired membrane-protein interactions, which can lead to fouling and subsequent protein adsorption. Affinity energy, defined as the strength of interaction between membranes and human serum proteins, plays a crucial role in assessing membrane-protein interactions.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Engineering Mechanics, Hohai University, Nanjing 211100, P.R. China.
The aberrant aggregation of the human islet amyloid polypeptide (hIAPP) is a hallmark of type II diabetes. LL37, the only cathelicidin host-defense peptide in humans, plays essential roles in antimicrobial and immunomodulatory activities. Mounting evidence indicates that LL37 can inhibit the amyloid aggregation of hIAPP, suggesting possible interplays between infections and amyloid diseases while the mechanism remains unclear.
View Article and Find Full Text PDFAnal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.
View Article and Find Full Text PDFMol Hortic
January 2025
Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!