Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering.

Adv Healthc Mater

Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01, Aoba, Sendai, 980-8579, Japan.

Published: November 2014

Hydrogel-based, molecular permeable electronic devices are considered to be promising for electrical stimulation and recording of living tissues, either in vivo or in vitro. This study reports the fabrication of the first hydrogel-based devices that remain highly electrically conductive under substantial stretch and bending. Using a simple technique involving a combination of chemical polymerization and electropolymerization of poly (3,4-ethylenedioxythiophene) (PEDOT), a tight bonding of a conductive composite of PEDOT and polyurethane (PU) to an elastic double-network hydrogel is achieved to make fully organic PEDOT/PU-hydrogel hybrids. Their response to repeated bending, mechanical stretching, hydration-dessication cycles, storage in aqueous condition for up to 6 months, and autoclaving is assessed, demonstrating excellent stability, without any mechanical or electrical damage. The hybrids exhibit a high electrical conductivity of up to 120 S cm(-1) at 100% elongation. The adhesion, proliferation, and differentiation of neural and muscle cells cultured on these hybrids are demonstrated, as well as the fabrication of 3D hybrids, advancing the field of tissue engineering with integrated electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201400209DOI Listing

Publication Analysis

Top Keywords

tissue engineering
8
hybrids
5
highly conductive
4
conductive stretchable
4
stretchable biocompatible
4
biocompatible electrode-hydrogel
4
electrode-hydrogel hybrids
4
hybrids advanced
4
advanced tissue
4
engineering hydrogel-based
4

Similar Publications

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Peficitinib suppresses diffuse-type tenosynovial giant cell tumor by targeting TYK2 and JAK/STAT signaling.

Sci China Life Sci

January 2025

Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.

Diffuse-type tenosynovial giant cell tumor (dTGCT) is a destructive but rare benign proliferative synovial neoplasm. Although surgery is currently the main treatment modality for dTGCT, the recurrence risk is up to 50%. Therefore, there is a great need for effective drugs against dTGCT with minor side effects.

View Article and Find Full Text PDF

Carboranyl amines are distinct from typical organic amines. Due to the electronic influence of the carborane cage, they have low nucleophilicity and are reluctant to alkylate. Moreover, asymmetric synthesis of chiral carboranes is still in its infancy.

View Article and Find Full Text PDF

A review on hydroxyapatite fabrication: from powders to additive manufactured scaffolds.

Biomater Sci

January 2025

Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.

Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications.

View Article and Find Full Text PDF

Hypoxia, a condition that enhances tumor invasiveness and metastasis, poses a significant challenge for diverse cancer therapies. There is a pressing demand for hypoxia-responsive nanoparticles with integrated photodynamic functions in order to address the aforementioned issues and overcome the reduced efficacy caused by tumor hypoxia. Here, we report a hypoxia-responsive supramolecular nanoparticle SN@IR806-CB consisting of a dendritic drug-drug conjugate (IR806-Azo-CB) and anionic water-soluble [2]biphenyl-extended-pillar[6]arene modified with eight ammonium salt ions (AWBpP6) the synergy of π-π stacking interaction, host-guest complexation, and hydrophobic interactions for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; , PTT-PDT-CT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!