LSD1 promotes oxidative metabolism of white adipose tissue.

Nat Commun

1] Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany [2] BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University, 79106 Freiburg, Germany [3] Deutsche Konsortium für Translationale Krebsforschung (DKTK), Standort, Freiburg, Germany.

Published: June 2014

Exposure to environmental cues such as cold or nutritional imbalance requires white adipose tissue (WAT) to adapt its metabolism to ensure survival. Metabolic plasticity is prominently exemplified by the enhancement of mitochondrial biogenesis in WAT in response to cold exposure or β3-adrenergic stimulation. Here we show that these stimuli increase the levels of lysine-specific demethylase 1 (LSD1) in WAT of mice and that elevated LSD1 levels induce mitochondrial activity. Genome-wide binding and transcriptome analyses demonstrate that LSD1 directly stimulates the expression of genes involved in oxidative phosphorylation (OXPHOS) in cooperation with nuclear respiratory factor 1 (Nrf1). In transgenic (Tg) mice, increased levels of LSD1 promote in a cell-autonomous manner the formation of islets of metabolically active brown-like adipocytes in WAT. Notably, Tg mice show limited weight gain when fed a high-fat diet. Taken together, our data establish LSD1 as a key regulator of OXPHOS and metabolic adaptation in WAT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112219PMC
http://dx.doi.org/10.1038/ncomms5093DOI Listing

Publication Analysis

Top Keywords

white adipose
8
adipose tissue
8
lsd1
6
wat
5
lsd1 promotes
4
promotes oxidative
4
oxidative metabolism
4
metabolism white
4
tissue exposure
4
exposure environmental
4

Similar Publications

Aim: The goal of this study was to determine the role of histone deacetylase 9 (HDAC9) in the development of diet-induced metabolic dysfunction-associated steatohepatitis (MASH) and white adipose tissue (WAT) dysfunctions.

Methods: We fed male and female mice with global Hdac9 knockout (KO) and their wild-type (WT) littermates an obesogenic high-fat/high-sucrose/high-cholesterol (35%/34%/2%, w/w) diet for 20 weeks.

Results: Hdac9 deletion markedly inhibited body weight gain and liver steatosis with lower liver weight and triglyceride content than WT in male mice but not females.

View Article and Find Full Text PDF

Food leftovers can be used as alternative feed ingredients for monogastric to replace human-competing feedstuffs, such as cereals, recycle a waste product, reduce the feed-food competition and keep nutrients and energy in the feed-food chain. Among food leftovers, former food products (FFPs) are no more intended for human but still suitable for animal consumption. However, the metabolic impact of FFP has never been investigated.

View Article and Find Full Text PDF

Aim: Irisin, a newly discovered adipomyokine, has pleiotropic effects in metabolic and energy homeostasis, insulin resistance (IR), and browning of white adipose tissue. The aim of this study was to evaluate irisin levels in children with obesity and also to elucidate possible relationships between irisin with anthropometric obesity indices, parameters of metabolic syndrome (MetS), and intima media thickness (IMT).

Methods: A total of 77 prepubertal children, 4-12 years old, were enrolled in this study, including 44 children with obesity (BMI ≥ 95th percentile) and 33 normal weight controls of matched age and gender.

View Article and Find Full Text PDF

Resveratrol (RSV), a natural polyphenol, has been suggested to influence glucose and lipid metabolism. However, the underlying molecular mechanism of its action remains largely unknown due to its multiple biological targets and low bioavailability. In this study, we demonstrate that RSV supplementation ameliorates high-fat-diet (HFD)-induced gut microbiota dysbiosis, enhancing the abundance of anti-obesity bacterial strains such as and .

View Article and Find Full Text PDF

In Obesity, Esophagogastric Junction Fat Impairs Esophageal Barrier Function and Dilates Intercellular Spaces via HIF-2α.

Gastroenterology

December 2024

Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX. Electronic address:

Background & Aims: Dilated intercellular space (DIS) in esophageal epithelium, a sign of impaired barrier function, is a characteristic finding of GERD that also is found in obese patients without GERD. We have explored molecular mechanisms whereby adipose tissue products might impair esophageal barrier integrity.

Methods: We established cultures of visceral fat obtained during foregut surgery from obese and non-obese patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!