3D networked graphene-ferromagnetic hybrids for fast shape memory polymers with enhanced mechanical stiffness and thermal conductivity.

Small

Graphene Research Center, KAIST Institute for the Nano Century, School of Mechanical Aerospace and Systems Engineering, Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.

Published: October 2014

A novel 3D networked graphene-ferromagnetic hybrid can be easily fabricated using one-step microwave irradiation. By incorporating this hybrid material into shape memory polymers, the synergistic effects of fast speed and the enhancement of thermal conductivity and mechanical stiffness can be achieved. This can be broadly applicable to designing magneto-responsive shape memory polymers for multifunction applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201400624DOI Listing

Publication Analysis

Top Keywords

shape memory
12
memory polymers
12
networked graphene-ferromagnetic
8
mechanical stiffness
8
thermal conductivity
8
graphene-ferromagnetic hybrids
4
hybrids fast
4
fast shape
4
polymers enhanced
4
enhanced mechanical
4

Similar Publications

LiNbO domain structures have been widely applied in nonlinear beam shaping, quantum light generation, and nonvolatile ferroelectric memory. The recent developments in nanoscale domain engineering techniques make it possible to fabricate sub-diffracted nanodomains in LiNbO crystal for high-speed modulation and high-capacity storage. However, it still lacks a feasible and efficient way to characterize these nanoscale domains.

View Article and Find Full Text PDF

The hippocampus (HPC) has emerged as a critical player in the control of food intake, beyond its well-known role in memory. While previous studies have primarily associated the HPC with food intake inhibition, recent research suggests a role in appetitive processes. Here we identified spatially distinct neuronal populations within the dorsal HPC (dHPC) that respond to either fats or sugars, potent natural reinforcers that contribute to obesity development.

View Article and Find Full Text PDF

The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway.

View Article and Find Full Text PDF

In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC).

View Article and Find Full Text PDF

Pretrained Deep Neural Network Kin-SiM for Single-Molecule FRET Trace Idealization.

J Phys Chem B

January 2025

Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States.

Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!