AI Article Synopsis

  • The study explores how acetylcholine (ACh), elevated by tacrine (THA), helps protect hippocampal cells from long-lasting damage caused by NMDA, focusing on the VEGF signaling system.
  • The findings show that inhibiting protein kinase C (PKC) significantly reduces the protective effects of THA, while inhibiting JNK pathways has no effect, indicating a specific pathway involvement.
  • Acetylcholine counteracts NMDA-induced changes, such as increased HIF1α and decreased VEGF-A, affecting the expression of VEGF-A in astrocytes and VEGFR-2 in neurons, suggesting a paracrine signaling mechanism that supports neuron survival.

Article Abstract

In our previous study, elevation of endogenous acetylcholine (ACh) by tacrine (THA) rescued NMDA-induced long-lasting hippocampal cell damage via muscarinic M1 receptors. However, the detailed molecular mechanism underlying the effect of ACh is unclear. This study investigated possible involvement of the VEGF signaling system in the rescuing effect of ACh on N-methyl-d-aspartate (NMDA)-induced long-lasting hippocampal cell damage using organotypic hippocampal slice cultures (OHSCs). As previously reported, NMDA pretreatment caused long-lasting hippocampal cell damage in OHSCs in a manner reversible by treatment with THA. The protein kinase C (PKC) inhibitor Ro31-8220, but not the extracellular signal-regulated kinase (ERK) inhibitor U0126, dose-dependently and almost completely abolished the effect of THA. The rescuing effect of THA was also partially but significantly blocked by Ki8751, a selective inhibitor of type 2 vascular endothelial growth factor (VEGF) receptor (VEGFR-2) tyrosine kinase. NMDA pretreatment elevated the expression level of HIF1α, whereas it decreased the expression of VEGF-A. Moreover, NMDA pretreatment reduced the level of phosphorylated VEGFR-2 without apparently affecting the level of VEGFR-2 or β-actin. These NMDA pretreatment-induced changes were significantly attenuated by THA treatment. Immunohistochemical analysis conducted 6days after NMDA pretreatment revealed that VEGF-A and VEGFR-2 were mainly expressed on astrocytes and neurons, respectively, in OHSCs. In OHSCs pretreated with NMDA, THA treatment induced a morphological and activation-related change in astrocytes expressing VEGF-A. The present results demonstrate that endogenous acetylcholine plays a rescuing role towards excitotoxicity-induced long-lasting hippocampal cell damage in part via paracrine VEGF signaling between astrocytes and hippocampal neurons or autocrine VEGF signaling in hippocampal neurons in OHSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2014.05.009DOI Listing

Publication Analysis

Top Keywords

long-lasting hippocampal
20
hippocampal cell
20
cell damage
20
vegf signaling
16
nmda pretreatment
16
endogenous acetylcholine
12
nmda-induced long-lasting
12
hippocampal
9
involvement vegf
8
signaling system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!