Download full-text PDF

Source

Publication Analysis

Top Keywords

patient-specific instrumentation
4
instrumentation total
4
total knee
4
knee arthroplasty
4
arthroplasty sports
4
sports medicine
4
patient-specific
1
total
1
knee
1
arthroplasty
1

Similar Publications

Purpose: Gap-balanced total knee arthroplasty (TKA) technique relies on initial ligament evaluation, particularly in patient-specific implantation using computer-assisted technologies. This cadaveric study aimed to compare the reproducibility and reliability of medial and lateral gap measurements between manual stress testing and dynamic ligament balancer.

Methods: Initial gap acquisitions were assessed from eight cadaveric knees (four specimens) during the same navigated TKA procedure by five differently skilled surgeons (three seniors and two juniors).

View Article and Find Full Text PDF

Patient-specific templating (PST), which is a sister procedure to patient-specific instrumentation (PSI) but hospital-based, is relatively less complex and less expensive than robotics and navigation. However, there are some concerns about the PST including the process of preoperative planning, 3D printing and material, positioning of PST intraoperatively, availability, and clinical value. The purpose of this study was to validate the technical accuracy and reliability of the PST technique in the lab and to report the outcomes of clinical application.

View Article and Find Full Text PDF

Background: Correction of adult spinal deformity (ASD) through minimally invasive techniques is a challenging endeavor and has typically been reserved for experienced surgeons. This publication aims to be the first high-resolution technique guide to demonstrate a reproducible technique for ASD correction utilizing circumferential minimally invasive surgery (cMIS) without an osteotomy. The Segmental Interbody, Muscle-Preserving, Ligamentotaxis-Enabled Reduction (SIMPLER) technique is a novel ligamentotaxis-based scoliosis surgery that represents a paradigm shift from traditional osteotomies toward patient-specific correction.

View Article and Find Full Text PDF

Mesenchymal stromal cells promote the formation of lung cancer organoids via Kindlin-2.

Stem Cell Res Ther

January 2025

Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.

Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.

View Article and Find Full Text PDF

Selecting an appropriate microcatheter tip shape for paraclinoid aneurysms is difficult. Therefore, we devised an original simple and uniform three-dimensional (3D) spiral-shaping method of microcatheter and validated the characteristics and usefulness of this method for coil embolization of paraclinoid aneurysms using patient-specific silicone models. These silicone models were produced based on clinical data from four patients with four paraclinoid aneurysms that underwent endovascular treatment using the 3D spiral-shaping method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!