Membrane fouling by vesicles and prevention through ozonation.

Environ Sci Technol

School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States.

Published: July 2014

Membrane fouling is a major challenge in water and wastewater treatment. Recent observations that ozone mitigates membrane fouling during filtration of secondary effluent prompted this study into the impact of preozonation on membrane fouling caused by biogenic colloids. The focus of this study was on liposomes, synthetic vesicles composed of (phospho)lipid bilayers, which are representative of the diverse cellular vesicles present in all biologically impacted waters. The overarching hypothesis was that these biologically produced, nonrigid or "soft" colloids (e.g., vesicles) present in wastewater give rise to unique fouling behavior that can be mitigated by preozonation. Using dead-end ultrafiltration (UF) and batch ozonation tests, the key findings of this study were (1) liposomes fouled UF membranes faster (4-13 times membrane cake resistance (RC) per mgC filtered) than polysaccharides, fatty acids, and NOM on a DOC-normalized basis; (2) based on the estimated carbon distribution of secondary effluent, liposome-like biogenic nanomaterials could be responsible for 20-60% of fouling during UF; and (3) preozonation reduces liposomal fouling during UF, likely due to the disruption of the liposome structure through cleavage of the fatty acid tails at carbon-carbon double bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es500435eDOI Listing

Publication Analysis

Top Keywords

membrane fouling
16
secondary effluent
8
study liposomes
8
fouling
6
membrane
5
vesicles
4
fouling vesicles
4
vesicles prevention
4
prevention ozonation
4
ozonation membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!