Aging Influence on Gray Matter Structural Associations within the Default Mode Network Utilizing Bayesian Network Modeling.

Front Aging Neurosci

College of Information Science and Technology, Beijing Normal University, Beijing , China ; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing , China.

Published: June 2014

Recent neuroimaging studies have revealed normal aging-related alterations in functional and structural brain networks such as the default mode network (DMN). However, less is understood about specific brain structural dependencies or interactions between brain regions within the DMN in the normal aging process. In this study, using Bayesian network (BN) modeling, we analyzed gray matter volume data from 109 young and 82 old subjects to characterize the influence of aging on associations between core brain regions within the DMN. Furthermore, we investigated the discriminability of the aging-associated BN models for the young and old groups. Compared to their young counterparts, the old subjects showed significant reductions in connections from right inferior temporal cortex (ITC) to medial prefrontal cortex (mPFC), right hippocampus (HP) to right ITC, and mPFC to posterior cingulate cortex and increases in connections from left HP to mPFC and right inferior parietal cortex to right ITC. Moreover, the classification results showed that the aging-related BN models could predict group membership with 88.48% accuracy, 88.07% sensitivity, and 89.02% specificity. Our findings suggest that structural associations within the DMN may be affected by normal aging and provide crucial information about aging effects on brain structural networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038778PMC
http://dx.doi.org/10.3389/fnagi.2014.00105DOI Listing

Publication Analysis

Top Keywords

gray matter
8
structural associations
8
default mode
8
mode network
8
bayesian network
8
network modeling
8
brain structural
8
brain regions
8
regions dmn
8
dmn normal
8

Similar Publications

Medial orbitofrontal cortex structure, function, and cognition associates with weight loss for laparoscopic sleeve gastrectomy.

Obesity (Silver Spring)

February 2025

Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Objective: The objective of this study was to investigate underlying mechanisms of long-term effective weight loss after laparoscopic sleeve gastrectomy (LSG) and effects on the medial orbitofrontal cortex (mOFC) and cognition.

Methods: A total of 18 individuals with obesity (BMI ≥ 30 kg/m) underwent LSG. Clinical data, cognitive scores, and brain magnetic resonance imaging scans were evaluated before LSG and 12 months after LSG.

View Article and Find Full Text PDF

Estrogen, a steroid hormone synthesized by both gonadal and nongonadal tissues, plays a pivotal role in modulating immune responses, including reducing relapse rates in relapsing-remitting multiple sclerosis (MS). This study explored the expression of aromatase, the enzyme responsible for estrogen synthesis, in lymph nodes (LNs) and its potential role in the pathogenesis of MS using a mouse model. We utilized Cyp19-RFP mice where cells that express or have previously expressed the Cyp19 gene (encoding aromatase) are marked by red fluorescent protein (RFP).

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) loss in spontaneous intracranial hypotension (SIH) is accompanied by volume shifts between the intracranial compartments. This study investigated tricompartimental and longitudinal volume shifts after closure of a CSF leak.

Methods: Patients with SIH and suitable pre-therapeutic and post-therapeutic imaging for volumetric analysis were identified from our tertiary care center between 2020 and 2023.

View Article and Find Full Text PDF

Whole-brain gray matter volume and fractional anisotropy of the posterior thalamic radiation and sagittal stratum in healthy adults correlate with the local environment.

Neuroimage

January 2025

Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan; Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan; ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan; Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan; Brain Impact, Kyoto, Japan.

The impacts of air pollution, local climate, and urbanization on human health have been well-documented in recent studies. In this study, we combined magnetic resonance imaging (MRI) brain analysis with a questionnaire survey on the local environment in 141 healthy middle-aged men and women. Our findings reveal that a favorable environment is positively correlated with gray matter volume (GMV) in the frontal and occipital lobes, cerebellum, and whole brain, as well as with fractional anisotropy (FA) in the fornix (including the fornix stria terminalis), posterior thalamic radiation (PTR), sagittal stratum (SS), and whole brain.

View Article and Find Full Text PDF

Influence of lung function on macro- and micro-structural brain changes in mid- and late-life.

Int J Surg

January 2025

Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Introduction: Lung function has been associated with cognitive decline and dementia, but the extent to which lung function impacts brain structural changes remains unclear. We aimed to investigate the association of lung function with structural macro- and micro-brain changes across mid- and late-life.

Methods: The study included a total of 37 164 neurologic disorder-free participants aged 40-70 years from the UK Biobank, who underwent brain MRI scans 9 years after baseline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!