Stability of endoglucanases from mesophilic fungus and thermophilic bacterium in acidified polyols.

Enzyme Microb Technol

Syngenta Centre for Sugarcane Biofuels Development, Queensland University of Technology, GPO Box 2432, 2 George Street, Brisbane, Queensland 4001, Australia.

Published: May 2015

Recent developments in chemical pretreatments of lignocellulosic biomass using polyols as co-solvents (e.g., glycerol and ethylene glycol) at temperatures less than 100°C may allow the effective use of thermostable and non-thermostable cellulases in situ during the saccharification process. The potential of biomass saccharifying enzymes, endoglucanases (EG) from a thermophilic bacterium (Thermotoga maritima) and a mesophilic fungus (Trichoderma longibrachiatum), to retain their activity in aqueous buffer, acidified glycerol, and acidified ethylene glycol used as co-solvents at pretreatment temperatures at or below 100°C were examined. The results show that despite its origin, T. longibrachiatum EG (Tl-EG) retained 75% of its activity after exposure to 100°C for 5 min in aqueous buffer while T. maritima EG (Tm-EG) retained only 5% activity. However, at 90°C both enzymes retained over 87% of their activity. In acidified (0.1% (w/w) H2SO4) glycerol, Tl-EG retained similar activity (80%) to that obtained in glycerol alone, while Tm-EG retained only 35%. With acidified ethylene glycol under these conditions, both Tl-EG and Tm-EG retained 36% of their activity. The results therefore show that Tl-EG is more stable in both acidified glycerol and ethylene glycol than Tm-EG. A preliminary kinetic study showed that pure glycerol improved the thermal stability of Tl-EG but destabilized Tm-EG, relative to the buffer solution. The half-lives of both Tl-EG and Tm-EG are 4.5 min in acidified glycerol, indicating that the effectiveness of these enzymes under typical pretreatment times of greater than 15 min will be considerably diminished. Attempts have been made to explain the differences in the results obtained between the two enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2014.04.015DOI Listing

Publication Analysis

Top Keywords

ethylene glycol
16
acidified glycerol
12
tm-eg retained
12
mesophilic fungus
8
thermophilic bacterium
8
glycerol ethylene
8
temperatures 100°c
8
aqueous buffer
8
acidified ethylene
8
tl-eg retained
8

Similar Publications

Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation.

Adv Mater

January 2025

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.

3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable.

View Article and Find Full Text PDF

Evaluation of Performance and Stability of a Gel-Type Polymer Sorbent for Recovery of Phosphate from Waste Streams.

ACS Appl Polym Mater

December 2024

School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, BT9 5AG Belfast, Northern Ireland, U.K.

Phosphorus (P) fertilizer is an essential component of our food system with the majority of all mined P rock processed to make mineral fertilizers. Globally however P rock stocks are declining-both in quality and quantity-with poor P management creating a linear economic system where P is mined, globally redistributed into products and eventually discharged into the environment leading to eutrophication. To enable establishment of a circular P economy, whereby P can be recovered from waste for its industrial reuse, requires the development of effective P recovery technologies.

View Article and Find Full Text PDF

The transition from insulator to electro-responsive has been successfully achieved by earlier studies for some inorganic materials by applying external stimuli that modify their 3D and/or electronic structures. In the case of insulating polymers, this transition is frequently accomplished by mixing them with other electroactive materials, even though a few physical treatments that induce suitable chemical modifications have also been reported. In this work, a smart approach based on the application of an electro-thermal reorientation process followed by a charged gas activation treatment has been developed for transforming insulating 3D printed polymers into electro-responsive materials.

View Article and Find Full Text PDF

Solvation enabled highly efficient gradient assembly creates robust metal-phenolic coatings.

J Colloid Interface Sci

December 2024

The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China; School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China. Electronic address:

Metal-phenolic networks (MPNs) are supramolecular materials that have received interest in various fields, including biomedicine, separations, environmental remediation, and catalysis. Despite recent advances, the construction of thick and robust MPN coatings that withstand harsh conditions (e.g.

View Article and Find Full Text PDF

Suppressing over-oxidation is a crucial challenge for various chemical intermediate synthesis in heterogeneous catalysis. The distribution of oxidative species and the substrate coverage, governed by the direction of electron transfer, are believed to influence the oxidation extent. In this study, we present an experimental realization of surface coverage modulation on a photoelectrode using a photo-induced charge activation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!