A role for the lateral dorsal tegmentum in memory and decision neural circuitry.

Neurobiol Learn Mem

Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA; Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA. Electronic address:

Published: January 2015

A role for the hippocampus in memory is clear, although the mechanism for its contribution remains a matter of debate. Converging evidence suggests that hippocampus evaluates the extent to which context-defining features of events occur as expected. The consequence of mismatches, or prediction error, signals from hippocampus is discussed in terms of its impact on neural circuitry that evaluates the significance of prediction errors: Ventral tegmental area (VTA) dopamine cells burst fire to rewards or cues that predict rewards (Schultz, Dayan, & Montague, 1997). Although the lateral dorsal tegmentum (LDTg) importantly controls dopamine cell burst firing (Lodge & Grace, 2006) the behavioral significance of the LDTg control is not known. Therefore, we evaluated LDTg functional activity as rats performed a spatial memory task that generates task-dependent reward codes in VTA (Jo, Lee, & Mizumori, 2013; Puryear, Kim, & Mizumori, 2010) and another VTA afferent, the pedunculopontine nucleus (PPTg, Norton, Jo, Clark, Taylor, & Mizumori, 2011). Reversible inactivation of the LDTg significantly impaired choice accuracy. LDTg neurons coded primarily egocentric information in the form of movement velocity, turning behaviors, and behaviors leading up to expected reward locations. A subset of the velocity-tuned LDTg cells also showed high frequency bursts shortly before or after reward encounters, after which they showed tonic elevated firing during consumption of small, but not large, rewards. Cells that fired before reward encounters showed stronger correlations with velocity as rats moved toward, rather than away from, rewarded sites. LDTg neural activity was more strongly regulated by egocentric behaviors than that observed for PPTg or VTA cells that were recorded by Puryear et al. and Norton et al. While PPTg activity was uniquely sensitive to ongoing sensory input, all three regions encoded reward magnitude (although in different ways), reward expectation, and reward encounters. Only VTA encoded reward prediction errors. LDTg may inform VTA about learned goal-directed movement that reflects the current motivational state, and this in turn may guide VTA determination of expected subjective goal values. When combined it is clear the LDTg and PPTg provide only a portion of the information that dopamine cells need to assess the value of prediction errors, a process that is essential to future adaptive decisions and switches of cognitive (i.e. memorial) strategies and behavioral responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327698PMC
http://dx.doi.org/10.1016/j.nlm.2014.05.009DOI Listing

Publication Analysis

Top Keywords

prediction errors
12
reward encounters
12
ldtg
9
lateral dorsal
8
dorsal tegmentum
8
neural circuitry
8
dopamine cells
8
reward
8
encoded reward
8
vta
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!