A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of toluene degraders in a methanogenic enrichment culture. | LitMetric

Identification of toluene degraders in a methanogenic enrichment culture.

FEMS Microbiol Ecol

Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.

Published: September 2014

Methanogenic biodegradation involves the cooperative metabolism of syntrophic bacteria that catalyse the initial attack and subsequent degradation of hydrocarbons, and methanogens that convert intermediates such as hydrogen and carbon dioxide, formate, and/or acetate to methane. The identity of syntrophic microbes and the nature of their interactions with other syntrophs and methanogens are not well understood. Furthermore, it is difficult to isolate the organisms responsible for the initial activation and subsequent degradation of hydrocarbon substrates under methanogenic conditions due to the thermodynamic relationships that exist among microbes in methanogenic communities. We used time-resolved RNA stable isotope probing and RT-qPCR to identify the organisms involved in the initial attack on toluene and subsequent degradation reactions in a highly enriched toluene-degrading methanogenic culture. Our results reveal the importance of a Desulfosporosinus sp. in anaerobic toluene activation in the culture. Other organisms that appear to play roles in toluene degradation include Syntrophaceae, Desulfovibrionales and Chloroflexi. The high bacterial diversity observed in this culture and the extensive labelling of different phylogenetic groups over the course of the stable isotope probing experiment highlight the complexity of the relationships that exist in methanogenic ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1574-6941.12364DOI Listing

Publication Analysis

Top Keywords

subsequent degradation
12
initial attack
8
relationships exist
8
stable isotope
8
isotope probing
8
methanogenic
6
identification toluene
4
toluene degraders
4
degraders methanogenic
4
methanogenic enrichment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!