Interaction of Hsp70 with natural and artificial acidic glycans is demonstrated based on the native PAGE analysis. Hsp70 interacts with acidic glycopolymers that contain clustered sulfated and di-sialylated glycan moieties on a polyacrylamide backbone, but not with neutral or mono-sialylated glycopolymers. Hsp70 also interacts and forms a large complex with heparin, heparan sulfate, and dermatan sulfate that commonly contain 2-O-sulfated iduronic acid residues, but not with other types of glycosaminoglycans (GAGs). Hsp70 consists of the N-terminal ATPase domain and the C-terminal peptide-binding domain. The interaction analyses using the recombinant N- and C-terminal half domains show that the ATPase domain mediates the direct interaction with acidic glycans, while the peptide-binding domain stabilizes the large complexes with particular GAGs. To our knowledge, this is the first demonstration of direct binding of Hsp70 to the particular GAGs. This property may be involved in the physiological functions of Hsp70 at the plasma membrane and extracellular environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2014.05.137 | DOI Listing |
Nat Commun
January 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
Wall teichoic acids (WTAs) from the major Gram-positive foodborne pathogen Listeria monocytogenes are peptidoglycan-associated glycopolymers decorated by monosaccharides that, while not essential for bacterial growth, are required for bacterial virulence and resistance to antimicrobials. Here we report the structure and function of a bacterial WTAs rhamnosyltransferase, RmlT, strictly required for L. monocytogenes WTAs rhamnosylation.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
December 2024
All-Russian Collection of Microorganisms (VKM), Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, 142290, Russia.
Four salt-tolerant and aromatics degrading strains used in this study were isolated from polluted technogenic soil on the territory of the Verkhnekamsk potash deposit (Russia). The strains were aerobic, Gram-stain-positive, non-motile, non-endospore-forming irregular rods, exhibiting a marked rod-coccus growth cycle. They contained lysine-based peptidoglycan, teichulosonic acid and poly(glycosyl phosphate) polymers in the cell walls.
View Article and Find Full Text PDFmBio
January 2025
Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
is among the leading causes of hospital-acquired infections. Critical to biology and pathogenesis are the cell wall-anchored glycopolymers wall teichoic acids (WTA). Approximately one-third of isolates decorates WTA with a mixture of α1,4- and β1,4--acetylglucosamine (GlcNAc), which requires the dedicated glycosyltransferases TarM and TarS, respectively.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2025
Universidad de Santiago de Chile, Facultad de Química y Biología, Casilla 40 correo 33, Santiago, Chile. Electronic address:
Antimicrobial photodynamic therapy is a promising alternative to deal with antimicrobial resistance. However, both the low specificity and low local oxygen molecular concentrations decrease the antimicrobial efficiency limiting its use. An interesting approach to the problem is the use of molecules that can react reversibly with singlet oxygen by the formation of reversible endoperoxides, such as naphthalene, anthracene and pyridone derivatives.
View Article and Find Full Text PDFACS Nano
October 2024
Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, R.O.C.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!