Peptides confer interesting properties to materials, supramolecular assemblies and to lipid membranes and are used in analytical devices or within delivery vehicles. Their relative ease of production combined with a high degree of versatility make them attractive candidates to design new such products. Here, we review and demonstrate how CD- and solid-state NMR spectroscopic approaches can be used to follow the reconstitution of peptides into membranes and to describe some of their fundamental characteristics. Whereas CD spectroscopy is used to monitor secondary structure in different solvent systems and thereby aggregation properties of the highly hydrophobic domain of p24, a protein involved in vesicle trafficking, solid-state NMR spectroscopy was used to deduce structural information and the membrane topology of a variety of peptide sequences found in nature or designed. (15)N chemical shift solid-state NMR spectroscopy indicates that the hydrophobic domain of p24 as well as a designed sequence of 19 hydrophobic amino acid residues adopt transmembrane alignments in phosphatidylcholine membranes. In contrast, the amphipathic antimicrobial peptide magainin 2 and the designed sequence LK15 align parallel to the bilayer surface. Additional angular information is obtained from deuterium solid-state NMR spectra of peptide sites labelled with (2)H3-alanine, whereas (31)P and (2)H solid-state NMR spectra of the lipids furnish valuable information on the macroscopic order and phase properties of the lipid matrix. Using these approaches, peptides and reconstitution protocols can be elaborated in a rational manner, and the analysis of a great number of peptide sequences is reviewed. Finally, a number of polypeptides with membrane topologies that are sensitive to a variety of environmental conditions such as pH, lipid composition and peptide-to-lipid ratio will be presented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.2656DOI Listing

Publication Analysis

Top Keywords

solid-state nmr
20
supramolecular assemblies
8
hydrophobic domain
8
domain p24
8
nmr spectroscopy
8
peptide sequences
8
designed sequence
8
nmr spectra
8
solid-state
5
nmr
5

Similar Publications

Heteroleptic An (An = U, Np) chlorido-ketoenaminate complexes of the type [AnCl(TFB-BuA)(THF)] ( type: , ; TFB-BuA = 4-(-butylamino)-1,1,1-trifluorobut-3-en-2-one) and the homoleptic Np heteroarylalkenolate complexes [Np(PyTFP)] (, PyTFP = 1-(pyridin-2-yl)-3,3,3-trifluoroprop-1-en-2-ol) and [Np(DMOTFP)] (, DMOTFP = 1-(4,5-dimethyloxazol-2-yl)-3,3,3-trifluoroprop-1-en-2-ol) were synthesized and characterized (SC-XRD, NMR, Vis-NIR, MS). While their solid-state structures compare well to those of their uranium analogues, the behavior in solution showed significant differences. The binding motif of the DMOTFP ligand in complex can change to form two different complex isomers, as seen by paramagnetic chemical shifts in NMR experiments.

View Article and Find Full Text PDF

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

Misfolding and aggregation of proteins into amyloidogenic assemblies are key features of several metabolic and neurodegenerative diseases. Human insulin has long been known to form amyloid fibrils under various conditions, which affects its bioavailability and function. Clinically, insulin aggregation at recurrent injection sites poses a challenge for diabetic patients who rely on insulin therapy.

View Article and Find Full Text PDF

Deciphering the Topology of Sitagliptin Using an Integrated Approach.

ACS Omega

January 2025

Science Division, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.

Determining the structure of sitagliptin is crucial for ensuring its effectiveness and safety as a DPP-4 inhibitor used to treat type 2 diabetes. Accurate structure determination is vital for both drug development and maintaining quality control in manufacturing. This study integrates the advanced techniques of solid-state nuclear magnetic resonance (NMR) spectroscopy, three-dimensional (3D) electron diffraction, and density functional theory (DFT) calculations to investigate the structural intricacies of sitagliptin.

View Article and Find Full Text PDF

Anchoring Ag(I) into MOF-253 for Effectively Catalyzing Cycloaddition of CO with Alkynyl Alcohols/Amine under Ambient Conditions.

Inorg Chem

January 2025

Inner Mongolia Engineering Research Centre of Lithium-Sulfur Battery Energy Storage, Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China.

In the era of global warming, the conversion of carbon dioxide into high-value products has become a widely scrutinized emerging mitigation strategy. Metalation of bpy-containing MOF-253 led to the synthesis of MOF-253-0.5Ag, which acts as an efficient catalyst for the carbonylative cyclization of CO with alkyne molecules (such as propynyl alcohols and propynyl amines) at room temperature and ambient CO pressure, yielding the corresponding α-alkyl cyclic carbonates and oxazolidinones, thus endowing the catalytic system with bifunctional characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!