Biotransformation and bioactivation reactions of alicyclic amines in drug molecules.

Drug Metab Rev

Department of Drug Metabolism and Pharmacokinetics , Theravance, Inc., 901 Gateway Blvd, South San Francisco, CA, USA.

Published: August 2014

Aliphatic nitrogen heterocycles such as piperazine, piperidine, pyrrolidine, morpholine, aziridine, azetidine, and azepane are well known building blocks in drug design and important core structures in approved drug therapies. These core units have been targets for metabolic attack by P450s and other drug metabolizing enzymes such as aldehyde oxidase and monoamine oxidase (MAOs). The electron rich nitrogen and/or α-carbons are often major sites of metabolism of alicyclic amines. The most common biotransformations include N-oxidation, N-conjugation, oxidative N-dealkylation, ring oxidation, and ring opening. In some instances, the metabolic pathways generate electrophilic reactive intermediates and cause bioactivation. However, potential bioactivation related adverse events can be attenuated by structural modifications. Hence it is important to understand the biotransformation pathways to design stable drug candidates that are devoid of metabolic liabilities early in the discovery stage. The current review provides a comprehensive summary of biotransformation and bioactivation pathways of aliphatic nitrogen containing heterocycles and strategies to mitigate metabolic liabilities.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03602532.2014.924962DOI Listing

Publication Analysis

Top Keywords

biotransformation bioactivation
8
alicyclic amines
8
aliphatic nitrogen
8
nitrogen heterocycles
8
metabolic liabilities
8
drug
5
bioactivation reactions
4
reactions alicyclic
4
amines drug
4
drug molecules
4

Similar Publications

MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana.

Mol Breed

January 2025

Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China.

Unlabelled: Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, and , are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', ) in the banana genome. The expression of is confined to leaves, peduncles, fruit peels, and pulp.

View Article and Find Full Text PDF

Scutellarein Inhibits Osteosarcoma Growth by Targeting the TLR4/TRAF6/NF-κB Pathway.

Drug Des Devel Ther

January 2025

Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.

Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease worldwide, with no universally recognized effective treatments currently available. In recent years, ginseng and its principal active components, such as ginsenosides, have shown potential protective effects in the treatment of these liver diseases. In NAFLD, studies have demonstrated that ginseng can improve hepatic lipid metabolism, reduce inflammatory responses, and inhibit oxidative stress and fibrosis, thereby attenuating the progression of NAFLD.

View Article and Find Full Text PDF

Camellia seed oil (CSO), a potential prebiotic agent, can significantly increase the relative abundance of () in mice gut microbiota following oral administration, this study aims to investigate the enhancing effect in vitro. The results showed that after 24-h co-cultivation with 0.5% (v/v) CSO, the growth of increased from 11.

View Article and Find Full Text PDF

Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.

Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!