A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Effect of Platelet Proteins Released in Response to Titanium Implant Surfaces on Macrophage Pro-Inflammatory Cytokine Gene Expression. | LitMetric

The Effect of Platelet Proteins Released in Response to Titanium Implant Surfaces on Macrophage Pro-Inflammatory Cytokine Gene Expression.

Clin Implant Dent Relat Res

Griffith Health Institute, Molecular basis of Disease Program and School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia.

Published: December 2015

Background And Purpose: Platelets are one of the earliest cell types to interact with surgically inserted titanium implants. This in vitro study investigated the effect of titanium surface-induced platelet releasate on macrophage cytokine gene expression.

Materials And Methods: To mimic the in vivo temporal sequence of platelet arrival and protein production at the implant surface and the subsequent effect of these proteins on mediators of the immune response, the levels of platelet attachment and activation in response to culture on smooth polished, sandblasted and acid-etched (SLA), and hydrophilic-modified SLA (modSLA) titanium surfaces were first determined by microscopy and protein assay. The subsequent effect of the platelet-released proteins on human THP-1 macrophage cytokine gene expression was determined by polymerase chain reaction array after 1 and 3 days of macrophage culture on the titanium surfaces in platelet-releasate conditioned media.

Results: Platelet attachment was surface dependent with decreased attachment observed on the hydrophilic (modSLA) surface. The platelet releasate, when considered independently of the surface effect, elicited an overall pro-inflammatory response in macrophage cytokine gene expression, that is, the expression of typical pro-inflammatory cytokine genes such as TNF, IL1a, IL1b, and CCL1 was significantly up-regulated whereas the expression of anti-inflammatory cytokine genes such as IL10, CxCL12, and CxCL13 was significantly down-regulated. However, following platelet exposure to different surface modifications, the platelet releasate significantly attenuated the macrophage pro-inflammatory response to microrough (SLA) titanium and hastened an anti-inflammatory response to hydrophilic (modSLA) titanium.

Conclusions: Theses results demonstrate that titanium surface topography and chemistry are able to influence the proteomic profile released by platelets, which can subsequently influence macrophage pro-inflammatory cytokine expression. This immunomodulation may be an important mechanism via which titanium surface modification influences osseointegration.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cid.12231DOI Listing

Publication Analysis

Top Keywords

cytokine gene
16
macrophage pro-inflammatory
12
pro-inflammatory cytokine
12
gene expression
12
platelet releasate
12
macrophage cytokine
12
platelet
8
titanium
8
platelet attachment
8
titanium surfaces
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!