Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

Mater Sci Eng C Mater Biol Appl

Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Caixa Postal 676, 13560-970 São Carlos, SP, Brazil.

Published: August 2014

The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2014.04.068DOI Listing

Publication Analysis

Top Keywords

oxide layers
8
alloys ti-6al-4v
8
ti-6al-4v ti-6al-7nb
8
ti-6al-7nb micro-arc
8
micro-arc oxidation
8
oxide
5
growth aluminum-free
4
aluminum-free porous
4
porous oxide
4
layers titanium
4

Similar Publications

Germanium nanocrystal non-volatile memory devices: fabrication, charge storage mechanism and characterization.

Nanoscale

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.

The widespread proliferation and increasing use of portable electronic devices and wearables, and the recent developments in artificial intelligence and internet-of-things, have fuelled the need for high-density and low-voltage non-volatile memory devices. Nanocrystal memory, an emergent non-volatile memory (NVM) device that makes use of the Coulomb blockade effect, can potentially result in the scaling of the tunnel dielectric layer to a very small thickness. Since the nanocrystals are electrically isolated, potential charge leakage paths localized defects in the thin tunnel dielectric can be substantially reduced, unlike that in a continuous polysilicon floating gate structure.

View Article and Find Full Text PDF

Blue Electroluminescent Carbon Dots Derived from Victorian Lignite.

ACS Omega

January 2025

Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.

Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.

View Article and Find Full Text PDF

Chemical polymerization/oligomerization opens numerous opportunities, from fundamental materials research to practical applications in catalysis, energy, sensing, and medicine. The electrochemical detection of vitamins B (folic acid) and C (ascorbic acid) requires new approaches because of low selectivity, electrode fouling, and interference from other chemicals. As an excellent material for long-term vitamin detection, oligo 3,5-diamino-1,2,4-triazole (oligo DAT) enhances the sensitivity, selectivity, and stability of sensors by creating a stable, conductive layer that facilitates electron transfer and reduces interference from common substances like glucose or uric acid.

View Article and Find Full Text PDF

The combustion efficiency and reactivity of aluminum (Al) particles, as a crucial component in solid propellants, are constrained by the inert oxide layer aluminum oxide (AlO). Polytetrafluoroethylene (PTFE) can remove the oxide layer, however, carbon deposition generated during the reaction process still limits the reaction efficiency of Al/PTFE fuel. Here, a litchi-like Al/PTFE fuel with the nano-PTFE islands distributed on the Al particles surface is successfully designed, based on localized activation and synergistic reaction strategies, to solve the AlO layer and carbon deposition.

View Article and Find Full Text PDF

Different application domains impose diverse and often conflicting requirements on the optoelectronic performance of metal oxide semiconductor (MOS) thin-film transistors (TFTs). These varying demands present substantial challenges in the selection of TFT materials and the optimization of device performance. This study begins by examining three primary application areas for TFTs: display drivers, photodetectors, and optoelectronic synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!