Pseudomonas putida is a Gram-negative soil bacterium which is well-known for its versatile lifestyle, controlled by a large repertoire of transcriptional regulators. Besides one- and two-component regulatory systems, the genome of P. putida reveals 19 extracytoplasmic function (ECF) sigma factors involved in the adaptation to changing environmental conditions. In this study, we demonstrate that knockout of extracytoplasmic function sigma factor ECF-10, encoded by open reading frame PP4553, resulted in 2- to 4-fold increased antibiotic resistance to quinolone, β-lactam, sulfonamide, and chloramphenicol antibiotics. In addition, the ECF-10 mutant exhibited enhanced formation of biofilms after 24 h of incubation. Transcriptome analysis using Illumina sequencing technology resulted in the detection of 12 genes differentially expressed (>2-fold) in the ECF-10 knockout mutant strain compared to their levels of expression in wild-type cells. Among the upregulated genes were ttgA, ttgB, and ttgC, which code for the major multidrug efflux pump TtgABC in P. putida KT2440. Investigation of an ECF-10 and ttgA double-knockout strain and a ttgABC-overexpressing strain demonstrated the involvement of efflux pump TtgABC in the stress resistance and biofilm formation phenotypes of the ECF-10 mutant strain, indicating a new role for this efflux pump beyond simple antibiotic resistance in P. putida KT2440.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135749PMC
http://dx.doi.org/10.1128/AEM.01291-14DOI Listing

Publication Analysis

Top Keywords

extracytoplasmic function
12
putida kt2440
12
efflux pump
12
knockout extracytoplasmic
8
function sigma
8
sigma factor
8
factor ecf-10
8
stress resistance
8
resistance biofilm
8
biofilm formation
8

Similar Publications

Bacterial TonB-dependent transducers interact with the anti-σ factor in absence of the inducing signal protecting it from proteolysis.

PLoS Biol

December 2024

Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain.

Competitive bacteria like the human pathogen Pseudomonas aeruginosa can acquire iron from different iron carriers, which are usually internalized via outer membrane TonB-dependent receptors (TBDRs). Production of TBDRs is promoted by the presence of the substrate. This regulation often entails a signal transfer pathway known as cell-surface signaling (CSS) that involves the TBDR itself that also functions as transducer (and is thus referred to as TBDT), a cytoplasmic membrane-bound anti-σ factor, and an extracytoplasmic function σ (σECF) factor.

View Article and Find Full Text PDF

: ATP-binding cassette (ABC) transporters are prominent drug targets due to their highly efficient trafficking capabilities and their significant physiological and clinical roles. Gaining insight into their biophysical and biomechanistic properties is crucial to maximize their pharmacological potential. : In this study, we present the biochemical and biophysical characterization, and phylogenetic analysis of the domains of () ABC transporters: the exporter Rv1348 (IrtA) and the importer system Rv1349-Rv2895c (IrtB-Rv2895c), both involved in siderophore-mediated iron uptake.

View Article and Find Full Text PDF

Many sulfur-oxidizing prokaryotes oxidize sulfur compounds through a combination of initial extracytoplasmic and downstream cytoplasmic reactions. Facultative sulfur oxidizers adjust transcription to sulfur availability. While sulfur-oxidizing enzymes and transcriptional repressors have been extensively studied, sulfur import into the cytoplasm and how regulators sense external sulfur are poorly understood.

View Article and Find Full Text PDF

Antibiotic resistance is a global healthcare crisis. Bacteria are highly adaptable and can rapidly acquire mechanisms of resistance towards conventional antibiotics. The permeability barrier conferred by the Gram-negative bacteria cell envelope constitutes a first line of defence against the action of antibiotics.

View Article and Find Full Text PDF

The copper P-type ATPase CtpA is involved in the response of Mycobacterium tuberculosis to redox stress.

Biochimie

October 2023

Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia. Electronic address:

The functional difference among the three copper-transporting P-type ATPases (CtpA, CtpB, and CtpV) annotated in genome of Mycobacterium tuberculosis (Mtb) remains unclear. Thus, CtpA and CtpB are believed to deliver copper to extracytoplasmic proteins as a cofactor required to overcome redox and copper stress in the Mtb periplasm. This study investigates an alternative role of CtpA-mediated copper transportation and its possible interaction with the activity of the multicopper oxidase, (MmcO), in response to redox stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!