Introduction: The process through which the zebra finch (Taeniopygia guttata) acquires and produces crystallized song has long been thought of as highly analogous to the process through which humans acquire and produce speech. Nicotinic acetylcholine receptors are present in song nuclei that play important roles in song production and/or acquisition. We studied the effect of in vivo nicotine on temporal and spectral features of crystallized song.
Methods: We used 16 adult male zebra finches that were exposed to an established 7-day nicotine or saline treatment. Song behavior was monitored for a 2-month period following the cessation of the nicotine/saline treatment. All animals served as their own control in order to determine whether any song characteristics changed over the observed time period compared to the baseline measurement.
Results: Inter-syllable duration and Wiener entropy were significantly affected by the in vivo administration of nicotine. These observed changes persisted for a 2-month period following the cessation of nicotine exposure. Similar changes were not observed in the age-matching control group.
Conclusions: Nicotine significantly affected tempo and rhythm of the crystallized zebra finch song. We believe that this in vivo nicotine-exposed zebra finch model can not only provide a further understanding of the underlying behavioral mechanisms of the cognitive implications of nicotine dependence but also help in the development of therapeutics targeting cognitive deficits often observed during nicotine withdrawal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ntr/ntu090 | DOI Listing |
Genes (Basel)
November 2024
Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.
: Transcriptome assembly and functional annotation are essential in understanding gene expression and biological function. Nevertheless, many existing pipelines lack the flexibility to integrate both short- and long-read sequencing data or fail to provide a complete, customizable workflow for transcriptome analysis, particularly for non-model organisms. : We present TrAnnoScope, a transcriptome analysis pipeline designed to process Illumina short-read and PacBio long-read data.
View Article and Find Full Text PDFEcol Lett
January 2025
School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
Offspring of older breeders frequently show reduced longevity, which has been linked to shorter offspring telomere length. It is currently unknown whether such telomere reduction persists beyond a single generation, as would be the case if germline transmission is involved. In a within-grandmother, multi-generational study using zebra finches, we show that the shorter telomeres observed in F1 offspring of older mothers are still present in the F2 generation even when the breeding age of their F1 mothers is young.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Microbiology, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
is a flagellated protozoan parasite that affects numerous avian species worldwide, causing a range of diseases collectively termed trichomonosis. This review study aimed to present a comprehensive analysis of the prevalence of in birds of Iran, along with an exploration of its associated pathological findings. Through an extensive search of published studies, scientific databases, and relevant literature, we identified several studies conducted in Iran that focused on the prevalence of in different bird populations and their pathological effect.
View Article and Find Full Text PDFJ Neurosci
December 2024
Department of Psychology, University of Virginia, Charlottesville VA 22904, USA
Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song.
View Article and Find Full Text PDFBMC Neurosci
December 2024
Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany.
Zebra finches undergo a gradual refinement of their vocalizations, transitioning from variable juvenile songs to the stereotyped song of adulthood. To investigate the neural mechanisms underlying song crystallization-a critical phase in this developmental process-we performed intracellular recordings in HVC (a premotor nucleus essential for song learning and production) of juvenile birds. We then compared these recordings to previously published electrophysiological data from adult birds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!