Introduction: Spike-based magnetoencephalography (MEG) source localization is an established method in the presurgical evaluation of epilepsy patients. Focal cortical dysplasias (FCDs) are associated with focal epileptic discharges of variable morphologies in the beta frequency band in addition to single epileptic spikes. Therefore, we investigated the potential diagnostic value of MEG-based localization of spike-independent beta band (12-30Hz) activity generated by epileptogenic lesions.

Methods: Five patients with FCD IIB underwent MEG. In one patient, invasive EEG (iEEG) was recorded simultaneously with MEG. In two patients, iEEG succeeded MEG, and two patients had MEG only. MEG and iEEG were evaluated for epileptic spikes. Two minutes of iEEG data and MEG epochs with no spikes as well as MEG epochs with epileptic spikes were analyzed in the frequency domain. MEG oscillatory beta band activity was localized using Dynamic Imaging of Coherent Sources.

Results: Intralesional beta band activity was coherent between simultaneous MEG and iEEG recordings. Continuous 14Hz beta band power correlated with the rate of interictal epileptic discharges detected in iEEG. In cases where visual MEG evaluation revealed epileptic spikes, the sources of beta band activity localized within <2cm of the epileptogenic lesion as shown on magnetic resonance imaging. This result held even when visually marked epileptic spikes were deselected. When epileptic spikes were detectable in iEEG but not MEG, MEG beta band activity source localization failed.

Discussion: Source localization of beta band activity has the potential to contribute to the identification of epileptic foci in addition to source localization of visually marked epileptic spikes. Thus, this technique may assist in the localization of epileptic foci in patients with suspected FCD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eplepsyres.2014.05.003DOI Listing

Publication Analysis

Top Keywords

beta band
24
band activity
16
epileptic spikes
16
meg
11
frequency domain
8
epilepsy patients
8
patients focal
8
focal cortical
8
epileptic discharges
8
meg patients
8

Similar Publications

Technology and Dementia Preconference.

Alzheimers Dement

December 2024

Department of Bionano Technology, Gachon University, Seongnam, Korea, Republic of (South).

Background: Electroencephalography (EEG) is a non-intrusive technique that provides comprehensive insights into the electrical activities of the brain's cerebral cortex. The brain signals obtained from EEGs can be used as a neuropsychological biomarker to detect different stages of Alzheimer's disease (AD) through quantitative EEG (qEEG) analysis. This paper investigates the difference in the abnormalities of resting state EEG (rEEG) signals between eyes-open (EOR) and eyes-closed (ECR) in AD by analyzing 19- scalp electrode EEG signals and making a comparison with healthy controls (HC).

View Article and Find Full Text PDF

Introduction: Multitasking during flights leads to a high mental workload, which is detrimental for maintaining task performance. Electroencephalography (EEG) power spectral analysis based on frequency-band oscillations and microstate analysis based on global brain network activation can be used to evaluate mental workload. This study explored the effects of a high mental workload during simulated flight multitasking on EEG frequency-band power and microstate parameters.

View Article and Find Full Text PDF

Hemoglobinopathies, hereditary disorders affecting the structure or production of hemoglobin, were detected by routine HbA measurements by capillary electrophoresis (CE) at the University Hospital Motol, Prague. The potential of ultraviolet-visible (UV-Vis) and Fourier-transform infrared (FTIR) spectroscopy for the detection and characterization of hemoglobinopathies was investigated. FTIR spectra were recorded with a very high resolution (0.

View Article and Find Full Text PDF

Inclusion complexation of the sunscreen ingredient avobenzone (AVB) with β-cyclodextrin (β-CD) was investigated to improve its aqueous solubility and photostability; another ultraviolet (UV) filter, oxybenzone (OXB), and the phytochemical antioxidant curcumin (CUR) served as a comparison. In this study, the 1-octanol/water partition coefficients, acid dissociation constants, phase-solubility diagrams with β-CD, and ultraviolet-visible (UV-vis) spectral changes induced by UVA1 (365 nm) irradiation were evaluated. β-CD at concentrations 50-100 times that of AVB most effectively protected the photostability of AVB.

View Article and Find Full Text PDF

Effect of Alloying Metal Elements on the Valence Band of β-GaO: A First-Principles Study.

J Phys Chem Lett

January 2025

Group of the Fourth-generation Semiconductor Materials and Devices, Shenzhen Pinghu Laboratory, Shenzhen 518111, China.

β-GaO is a candidate semiconductor material for high-power electronics due to its ultrawide bandgap and high Baliga's figure of merit. However, its -type doping is extremely difficult because of its low and flat band dispersion at its valence band maximum (VBM). A few reports have predicted that the VBM of β-GaO can be enhanced via alloying a specific metal (M), which enables -type conduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!