For the Library of Integrated Network-based Cellular Signatures (LINCS) project many gene expression signatures using the L1000 technology have been produced. The L1000 technology is a cost-effective method to profile gene expression in large scale. LINCS Canvas Browser (LCB) is an interactive HTML5 web-based software application that facilitates querying, browsing and interrogating many of the currently available LINCS L1000 data. LCB implements two compacted layered canvases, one to visualize clustered L1000 expression data, and the other to display enrichment analysis results using 30 different gene set libraries. Clicking on an experimental condition highlights gene-sets enriched for the differentially expressed genes from the selected experiment. A search interface allows users to input gene lists and query them against over 100 000 conditions to find the top matching experiments. The tool integrates many resources for an unprecedented potential for new discoveries in systems biology and systems pharmacology. The LCB application is available at http://www.maayanlab.net/LINCS/LCB. Customized versions will be made part of the http://lincscloud.org and http://lincs.hms.harvard.edu websites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086130 | PMC |
http://dx.doi.org/10.1093/nar/gku476 | DOI Listing |
Photochem Photobiol
December 2024
Graduate School of Informatics, Nagoya University, Nagoya, Japan.
Circadian clocks facilitate organisms' adaptation to the day-night environmental cycle. Some of the component genes of the clocks ("clock genes") respond directly to changes in ambient light, supposedly allowing the clocks to synchronize to and/or oscillate robustly in the environmental cycle. In the dicotyledonous model plant Arabidopsis thaliana, the clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) show transient expression in response to the morning light.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.
Short-chain enoyl-CoA hydratase 1 deficiency (ECHS1D) is a rare genetic disorder caused by biallelic pathogenic variants in the ECHS1 gene. ECHS1D is characterised by severe neurological and physical impairment that often leads to childhood mortality. Therapies such as protein and single nutrient-restricted diets show poor efficacy, whereas the development of new treatments is hindered by the low prevalence of the disorder and a lack of model systems for treatment testing.
View Article and Find Full Text PDFCongenit Anom (Kyoto)
December 2024
Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
Sonic hedgehog (Shh) is expressed in the oropharyngeal epithelium, including the frontonasal ectodermal zone (FEZ), which is defined as the boundary between Shh and Fgf8 expression domains in the frontonasal epithelium. To investigate the role of SHH signaling from the oropharyngeal epithelium, we generated mice in which Shh expression is specifically deleted in the oropharyngeal epithelium (Isl1-Cre; Shh). In the mutant mouse, Shh expression was excised in the oropharyngeal epithelium as well as FEZ and ventral forebrain, consistent with the expression pattern of Isl1.
View Article and Find Full Text PDFBJOG
December 2024
Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China.
Objective: To explore the association between smoking, genetic susceptibility and early menopause (EM) and clarify the potential mechanisms underlying this relationship.
Design: An observational and Transcriptome-wide association analysis (TWAS) study.
Setting: UK Biobank and public summary statistics.
Animal Model Exp Med
December 2024
Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
Background: Traditional DNA microinjection methods used in mammals are difficult to apply to avian species due to their unique reproductive characteristics. Genetic manipulation in chickens, particularly involving immature follicles within living ovaries, has not been extensively explored. This study seeks to establish an efficient method for generating transgenic chickens through ovarian injection, potentially bypassing the challenges associated with primordial germ cell (PGC) manipulation and fertilized egg microinjection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!