In heart failure (HF), there is an imbalance between the production of reactive oxygen species and the synthesis of antioxidant enzymes, causing damage to the cardiovascular function and increased susceptibility to DNA damage. The aim of this study was to evaluate the influence of low-level laser therapy (LLLT) on parameters of oxidative stress and DNA damage in skeletal muscle and plasma of rats with HF. Wistar rats were allocated into six groups: "placebo" HF rats (P-HF, n = 9), "placebo" Sham rats (P-sham, n = 8), HF rats at a dose 3 J/cm(2) of LLLT (3 J/cm(2)-HF, n = 8), sham rats at a dose 3 J/cm(2) of LLLT (3 J/cm(2)-sham, n = 8), HF rats at a dose 21 J/cm(2) of LLLT (21 J/cm(2)-HF, n = 8) and sham rats at a dose 21 J/cm(2) of LLLT (21 J/cm(2)-sham, n = 8). Animals were submitted to a LLLT protocol for 10 days at the right gastrocnemius muscle. Comparison between groups showed a significant reduction in superoxide dismutase (SOD) activity in the 3 J/cm(2)-HF group (p = 0.03) and the 21 J/cm(2)-HF group (p = 0.01) compared to the P-HF group. 2',7'-Dihydrodichlorofluorescein (DCFH) oxidation levels showed a decrease when comparing 3 J/cm(2)-sham to P-sham (p = 0.02). The DNA damage index had a significant increase either in 21 J/cm(2)-HF or 21 J/cm(2)-sham in comparison to P-HF (p = 0.004) and P-sham (p = 0.001) and to 3 J/cm(2)-HF (p = 0.007) and 3 J/cm(2)-sham (p = 0.037), respectively. Based on this, laser therapy appears to reduce SOD activity and DCFH oxidation levels, changing the oxidative balance in the skeletal muscle of HF rats. Otherwise, high doses of LLLT seem to increase DNA damage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-014-1597-1DOI Listing

Publication Analysis

Top Keywords

dna damage
20
rats dose
16
dose j/cm2
16
j/cm2 lllt
16
laser therapy
12
sham rats
12
rats
10
influence low-level
8
low-level laser
8
parameters oxidative
8

Similar Publications

Advances of NAT10 in diseases: insights from dual properties as protein and RNA acetyltransferase.

Cell Biol Toxicol

December 2024

Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.

N-acetyltransferase 10 (NAT10) is a member of the Gcn5-related N-acetyltransferase (GNAT) family and it plays a crucial role in various cellular processes, such as regulation of cell mitosis, post-DNA damage response, autophagy and apoptosis regulation, ribosome biogenesis, RNA modification, and other related pathways through its intrinsic protein acetyltransferase and RNA acetyltransferase activities. Moreover, NAT10 is closely associated with the pathogenesis of tumors, Hutchinson-Gilford progeria syndrome (HGPS), systemic lupus erythematosus, pulmonary fibrosis, depression and host-pathogen interactions. In recent years, mRNA acetylation has emerged as a prominent focus of research due to its pivotal role in regulating RNA stability and translation.

View Article and Find Full Text PDF

Chronic hypereosinophilia, defined as persistent elevated blood levels of eosinophils ≥1,500/μL, is associated with tissue infiltration of eosinophils and consequent organ damage by eosinophil release of toxic mediators. The current therapies for chronic hypereosinophilia have limited success, require repetitive administration, and are associated with a variety of adverse effects. As a novel approach to treat chronic hypereosinophilia, we hypothesized that adeno-associated virus (AAV)-mediated delivery of an anti-human eosinophil antibody would provide one-time therapy that would mediate persistent suppression of blood eosinophil levels.

View Article and Find Full Text PDF

Mutations in tumor suppressor genes Vhl and Rassf1a cause DNA damage, chromosomal instability and induce gene expression changes characteristic of clear cell renal cell carcinoma.

Kidney Int

December 2024

Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site, Freiburg; Signalling Research Centres BIOSS and CIBSS, Faculty of Biology University of Freiburg, Freiburg, Germany. Electronic address:

RASSF1A is frequently biallelically inactivated in clear cell renal cell carcinoma (ccRCC) due to loss of chromosome 3p and promoter hypermethylation. Here we investigated the cellular and molecular consequences of single and combined deletion of the Rassf1a and Vhl tumor suppressor genes to model the common ccRCC genotype of combined loss of function of RASSF1A and VHL. In mouse embryonic fibroblasts and in primary kidney epithelial cells, double deletion of Rassf1a and Vhl caused chromosomal segregation defects and increased formation of micronuclei, demonstrating that pVHL and RASSF1A function to maintain genomic integrity.

View Article and Find Full Text PDF

Chromatin remodeling plays a pivotal role in the progression of esophageal squamous cell carcinoma (ESCC), but the precise mechanisms remain poorly understood. Here, we elucidated the critical function of staphylococcal nuclease and tudor domain-containing 1 (SND1) in modulating chromatin dynamics, thereby driving ESCC progression in both in vitro and in vivo models. Our data revealed that SND1 was markedly overexpressed in ESCC cell lines.

View Article and Find Full Text PDF

Recently, ultra-high dose rate (> 40 Gy/s, uHDR; FLASH) radiation therapy (RT) has attracted interest, because the FLASH effect that is, while a cell-killing effect on cancer cells remains, the damage to normal tissue could be spared has been reported. This study aimed to compare the immune-related protein expression on cancer cells after γ-ray, conventionally used dose rate (Conv) carbon ion (C-ion), and uHDR C-ion. B16F10 murine melanoma and Pan02 murine pancreas cancer were irradiated with γ-ray at Osaka University and with C-ion at Osaka HIMAK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!