A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE). | LitMetric

Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE).

Dis Model Mech

Hubrecht Institute - KNAW & UMC Utrecht, 3548CT Utrecht, The Netherlands. WUR, Experimental Zoology, 3700AH Wageningen, The Netherlands. Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, 48149 Münster, Germany.

Published: July 2014

AI Article Synopsis

  • Recent studies indicate that biomineralization, the process of forming minerals in bones and teeth, requires active inhibition as its default state, which must be controlled precisely for proper mineralization to happen.
  • The study focuses on a zebrafish mutant, called dragonfish (dgf), that is lacking the enzyme Enpp1, which is necessary for producing pyrophosphate, an inhibitor of mineralization; this leads to abnormal calcifications in various tissues similar to certain human diseases linked to ENPP1 mutations.
  • Additionally, the researchers found that ectopic calcifications in the dgf mutants occurred without typical osteoblast markers and showed that forced expression of Enpp1 in specific areas could correct some of the mineral

Article Abstract

In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hydroxyapatite, and pyrophosphate, a physiochemical inhibitor of mineralization. Here, we provide a detailed analysis of a zebrafish mutant, dragonfish (dgf), which is mutant for ectonucleoside pyrophosphatase/phosphodiesterase 1 (Enpp1), a protein that is crucial for supplying extracellular pyrophosphate. Generalized arterial calcification of infancy (GACI) is a fatal human disease, and the majority of cases are thought to be caused by mutations in ENPP1. Furthermore, some cases of pseudoxanthoma elasticum (PXE) have recently been linked to ENPP1. Similar to humans, we show here that zebrafish enpp1 mutants can develop ectopic calcifications in a variety of soft tissues - most notably in the skin, cartilage elements, the heart, intracranial space and the notochord sheet. Using transgenic reporter lines, we demonstrate that ectopic mineralizations in these tissues occur independently of the expression of typical osteoblast or cartilage markers. Intriguingly, we detect cells expressing the osteoclast markers Trap and CathepsinK at sites of ectopic calcification at time points when osteoclasts are not yet present in wild-type siblings. Treatment with the bisphosphonate etidronate rescues aspects of the dgf phenotype, and we detected deregulated expression of genes that are involved in phosphate homeostasis and mineralization, such as fgf23, npt2a, entpd5 and spp1 (also known as osteopontin). Employing a UAS-GalFF approach, we show that forced expression of enpp1 in blood vessels or the floorplate of mutant embryos is sufficient to rescue the notochord mineralization phenotype. This indicates that enpp1 can exert its function in tissues that are remote from its site of expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073271PMC
http://dx.doi.org/10.1242/dmm.015693DOI Listing

Publication Analysis

Top Keywords

zebrafish enpp1
8
enpp1 mutants
8
generalized arterial
8
arterial calcification
8
calcification infancy
8
infancy gaci
8
pseudoxanthoma elasticum
8
elasticum pxe
8
enpp1
6
mineralization
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: