Multiple systemic transplantations of human amniotic mesenchymal stem cells exert therapeutic effects in an ALS mouse model.

Cell Tissue Res

Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.

Published: September 2014

Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease involving degeneration of motor neurons in the central nervous system. Stem cell treatment is a potential therapy for this fatal disorder. The human amniotic membrane (HAM), an extremely rich and easily accessible tissue, has been proposed as an attractive material in cellular therapy and regenerative medicine because of its advantageous characteristics. In the present study, we evaluate the long-term effects of a cellular treatment by intravenous administration of human amniotic mesenchymal stem cells (hAMSCs) derived from HAM into a hSOD1(G93A) mouse model. The mice received systemic administration of hAMSCs or phosphate-buffered saline (PBS) at the onset, progression and symptomatic stages of the disease. hAMSCs were detected in the spinal cord at the final stage of the disease, in the form of isolates or clusters and were negative for β-tubulin III and GFAP. Compared with the treatment with PBS, multiple hAMSC transplantations significantly retarded disease progression, extended survival, improved motor function, prevented motor neuron loss and decreased neuroinflammation in mice. These findings demonstrate that hAMSC transplantation is a promising cellular treatment for ALS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-014-1903-zDOI Listing

Publication Analysis

Top Keywords

human amniotic
12
amniotic mesenchymal
8
mesenchymal stem
8
stem cells
8
mouse model
8
cellular treatment
8
multiple systemic
4
systemic transplantations
4
transplantations human
4
cells exert
4

Similar Publications

The increased cost and morbidity associated with diabetic foot ulcers (DFUs) place a substantial strain on the entire global healthcare system. In this trial, 24 subjects with a chronic DFU, Wagner grade 1 (University of Texas grade 1A), were treated with Standard of Care (SOC) therapy and randomized, one-half to receive advanced high-purity Type-I collagen-based skin substitute (HPTC; manufactured by Encoll Corp., Fremont, CA, USA), and the other half to receive a dehydrated human amnion/chorion membrane (dHACM) or viable cryopreserved human placental membrane (vCHPM).

View Article and Find Full Text PDF

Purpose: Human amniotic membrane (hAM) grafts have been used to close persistent macular holes in recent years. The results from these surgeries are promising with improved closure rate and vision. However, there is lack of data for what happens to these membranes and how long the tissue should remain inside the patient's eyes.

View Article and Find Full Text PDF

BACKGROUND Ureaplasma urealyticum (UU) is a common microorganism that has been associated with a variety of obstetric and neonatal complications, such as infertility, stillbirth, histologic chorioamnionitis, neonatal sepsis, respiratory infections, and central nervous system infections. However, it is rare for it to cause severe neonatal asphyxia. This rarity is the focus of our case report, which aims to highlight the potential severity of UU infections in newborns.

View Article and Find Full Text PDF

Introduction: Human amniotic membrane (hAM) has a highly biocompatible natural scaffold that is abundant in several extracellular matrix (ECM) components, including but not limited to platelet-derived growth factor (PDGF), transforming growth factor (TGF), and fibroblast growth factor (FGF). In our study, we have focused on a mixture of hAM and demineralized bone matrix (DBM) as an allo-hybrid graft to deliver it into the site of bone defect to decrease bone remodeling time.

Methods: Allo-hybrid grafts were prepared by coating the jelly made of decellularized and lyophilized hAM (AMJ) on the surface of DBM and subsequently underwent in vitro studies, such as alkaline phosphatase activity, MTT assay, and SEM analysis.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!