Reovirus-mediated induction of ADAR1 (p150) minimally alters RNA editing patterns in discrete brain regions.

Mol Cell Neurosci

Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States. Electronic address:

Published: July 2014

Transcripts encoding ADAR1, a double-stranded, RNA-specific adenosine deaminase involved in the adenosine-to-inosine (A-to-I) editing of mammalian RNAs, can be alternatively spliced to produce an interferon-inducible protein isoform (p150) that is up-regulated in both cell culture and in vivo model systems in response to pathogen or interferon stimulation. In contrast to other tissues, p150 is expressed at extremely low levels in the brain and it is unclear what role, if any, this isoform may play in the innate immune response of the central nervous system (CNS) or whether the extent of editing for RNA substrates critical for CNS function is affected by its induction. To investigate the expression of ADAR1 isoforms in response to viral infection and subsequent alterations in A-to-I editing profiles for endogenous ADAR targets, we used a neurotropic strain of reovirus to infect neonatal mice and quantify A-to-I editing in discrete brain regions using a multiplexed, high-throughput sequencing strategy. While intracranial injection of reovirus resulted in a widespread increase in the expression of ADAR1 (p150) in multiple brain regions and peripheral organs, significant changes in site-specific A-to-I conversion were quite limited, suggesting that steady-state levels of p150 expression are not a primary determinant for modulating the extent of editing for numerous ADAR targets in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134954PMC
http://dx.doi.org/10.1016/j.mcn.2014.06.001DOI Listing

Publication Analysis

Top Keywords

brain regions
12
a-to-i editing
12
adar1 p150
8
discrete brain
8
extent editing
8
expression adar1
8
adar targets
8
editing
6
p150
5
reovirus-mediated induction
4

Similar Publications

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Exaggerated neuronal excitation by glutamate is a well-known cause of excitotoxicity, a key factor in numerous neurodegenerative disorders. This study examined the neurotoxic effect of monosodium glutamate (MSG) in the brain cortex of rats and focused on assessing the potential neuroprotective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Four groups of adult male rats (n = 10) were assigned as follows; normal control, ω-3 PUFAs (400 mg/kg) alone, MSG (4 mg/g) alone, and MSG plus ω-3 PUFAs (4 mg/g MSG plus 400 mg/kg ω-3 PUFAs).

View Article and Find Full Text PDF

Objective: This study aims to improve genetic diagnosis in childhood onset epilepsy with neurodevelopmental problems by utilizing RNA sequencing of fibroblasts to identify pathogenic variants that may be missed by exome sequencing and copy number variation analysis.

Methods: We enrolled 41 individuals with childhood onset epilepsy and neurodevelopmental problems who previously had inconclusive genetic testing. Fibroblast samples were cultured and analyzed using RNA sequencing to detect aberrant expression, aberrant splicing, and monoallelic expression using the Detection of RNA Outlier Pipeline (DROP) pipeline.

View Article and Find Full Text PDF

Objectives: Balancing oxygen requirements, neurologic outcomes, and systemic complications from transfusions in traumatic brain injury (TBI) patients is challenging. This review compares liberal and restrictive transfusion strategies in TBI patients.

Data Sources: Electronic databases were searched from inception to October 2024.

View Article and Find Full Text PDF

Purpose: This research aims to identify the problems and needs of families of children with reading difficulties, develop an Integrated Process-Based Family Education Program (IPMD-F) to address these needs, and implement it.

Methods: The study used a community-based participatory action research approach, following a four-stage process: general information collection, needs identification and action plan creation, development and implementation of the IPMD-F, and evaluation. Conducted during the 2023-2024 academic year in Ankara, Turkey, with 16 volunteer parents of children diagnosed with learning disabilities, data were collected using qualitative and quantitative tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!